A HYBRID APPROACH COMBINING CONJOINT ANALYSIS AND THE ANALYTIC HIERARCHY PROCESS FOR MULTICRITERIA GROUP DECISION-MAKING

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 13, 2025
Ruffin-Benoît M. Ngoie
Jean-Roger Bansimba
Falonne N. Mpolo Rama M. Bazangika Jean-Aimé B. Sakulu
Ruffin B. Mbaka Fabrice N. Bonkile

Abstract

In this article, we introduce the Conjoint Analytic Hierarchy Process (CAHP), a novel multi-criteria aggregation function that hybridizes Conjoint Analysis (CA) and the Analytic Hierarchy Process (AHP). Most of the limitations of traditional multi-criteria methods are addressed by CAHP. The proposed approach has many practical implications in various sectors such as business, industry, healthcare, education, and more. The keystone of the method is to apply CA to obtain the weights of criteria before applying the usual AHP in the subsequent steps (level of alternatives). Prior to using the AHP, decision tables from decision-makers were transformed into a unique decision table using the arithmetic mean of alternatives’ performances on criteria. Appropriate formulas were then used to turn this aggregated decision table into pairwise comparison matrices, upon which the AHP was applied. We tested the CAHP in two real-world situations to demonstrate its reliability. The results show that the rankings obtained from CAHP are identical to those from other methods, such as TOPSIS, ELECTRE II, and PROMETHEE II. Future research should focus on developing user-friendly tools to facilitate CAHP application. Other perspectives would involve carefully classifying each criterion’s modalities to prevent inversions in respondent preferences during CA and assessing possible biases to manage unexpected preferences.

How to Cite

Ngoie, R.-B., Bansimba, J.-R., Mpolo, F., Bazangika, R., Sakulu, J.-A., Mbaka, R., & Bonkile, F. (2025). A HYBRID APPROACH COMBINING CONJOINT ANALYSIS AND THE ANALYTIC HIERARCHY PROCESS FOR MULTICRITERIA GROUP DECISION-MAKING. International Journal of the Analytic Hierarchy Process, 17(1). https://doi.org/10.13033/ijahp.v17i1.1308

Downloads

Download data is not yet available.
Abstract 73 | PDF Downloads 50

##plugins.themes.bootstrap3.article.details##

Keywords

AHP, Conjoint Analysis, Criteria Weighting, Group Decision-Making, Multicriteria Analysis, Pairwise Comparison

References
Aguarón, J., Escobar, M. T., & Moreno-Jiménez, J. M. (2020). Reducing inconsistency measured by the Geometric Consistency Index in the Analytic Hierarchy Process. European Journal of Operational Research, 285(3), 1011–1017. https://doi.org/10.1016/j.ejor.2020.06.014

Amenta, P., Lucadamo, A., & Marcarelli, G. (2020). On the transitivity and consistency approximated thresholds of some consistency indices for pairwise comparison matrices. Journal of the Operational Research Society, 71(2), 234–246. https://doi.org/10.1080/01605682.2019.1651234

Amenta, P., Lucadamo, A., & Marcarelli, G. (2021). On the choice of weights for aggregating judgments in non-negotiable AHP group decision making. International Journal of Information Technology & Decision Making, 20(6), 1725–1746. https://doi.org/10.1142/S0219622021500584

Auty, S. (1995). Using conjoint analysis in industrial marketing: the role of judgment. Industrial Marketing Management, 24(3), 191–206. https://doi.org/10.1016/0019-8501(94)00078-b

Bączkiewicz, A. (2021). MCDM based e-commerce consumer decision support tool. Procedia Computer Science, 192, 4991–5002. https://doi.org/10.1016/j.procs.2021.09.277

Beynon, M., Curry, B., & Morgan, P. (2000). The Dempster-Shafer theory of evidence: An alternative approach to multicriteria decision modelling. Omega, 28(1), 37–50. https://doi.org/10.1016/S0305-0483(99)00033-X

Brans, J. P., & Mareschal, B. (1986). How to select and how to rank projects: The PROMETHEE method. European Journal of Operational Research, 24(2), 228–238. https://doi.org/10.1016/0377-2217(86)90044-5

Brans, J. P., & Mareschal, B. (1994). The PROMCALC & GAIA decision support system for multicriteria decision aid. Decision Support Systems, 12(4-5), 297–310. https://doi.org/10.1016/0167-9236(94)90048-5

Brans, J. P., & Vincke, P. (1985). A preference ranking organization method (The PROMETHEE method for multiple criteria decision-making). Management Science, 31(6), 641–656. https://doi.org/10.1287/mnsc.31.6.647

Carricano, M., & Poujol, F. (2008). Analyse conjointe: Méthodes et applications. Paris: Dunod.

Chang, W.-Y., Taecharungroj, V., & Kapasuwan, S. (2022). Sustainable luxury consumers’ preferences and segments: Conjoint and cluster analyses. Sustainability, 14(15), 9551. https://doi.org/10.3390/su14159551

Chao, H. (2008). A note on AHP group consistency for the row geometric mean prioritization procedure. European Journal of Operational Research, 126(3), 683–687. https://doi.org/10.1016/j.ejor.2008.03.012

de la Cruz, R., & Kreft, J.-U. (2019). Geometric mean extension for data sets with zeros. Journal of Statistical Applications, 42(4), 123–132. https://doi.org/10.48550/arXiv.1806.06403

Dong, Y., Zhang, G., Hong, W.-C., & Xu, Y. (2010). Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems, 49(3), 281–289. https://doi.org/10.1016/j.dss.2010.03.003

Elton, E. J., & Gruber, M. J. (1974). On the maximization of the geometric mean with lognormal return distribution. Management Science, 21(4), 483–488. http://www.jstor.org/stable/2629620

Evrard, Y., Pras, B., & Roux, E. (1993). Market: Etudes et recherches en marketing. Paris: Nathan.

Furtado, S., & Johnson, C. R. (2024). Efficient vectors in priority setting methodology. Annals of Operations Research, 332(1), 743–764. https://doi.org/10.1007/s10479-023-05771-y

Geetha, T., & Raj, S. A. (2019). An arithmetic mean of FSM in making decision. International Journal of Recent Technology and Engineering, 8(4), 69–76. https://doi.org/10.35940/ijrte.D6467.118419

Green, P. E., & Rao, V. R. (1971). Conjoint measurement for quantifying judgmental data. Journal of Marketing Research, 8(3), 355–363. https://doi.org/10.2307/3149575

Green, P. E., & Srinivasan, V. (1978). Conjoint measurement for marketing research applications. Journal of Marketing Research, 15(1), 64–74.

Green, P. E., & Srinivasan, V. (1990). Conjoint Analysis in marketing: New developments with implications for research and practice. Journal of Marketing, 54(4), 3–19. https://doi.org/10.1177/002224299005400402

Green, P. E., & Wind, Y. (1975). New ways to measure consumers’ judgments. Harvard Business Review, 53(1), 107–117.

Green, P., & Srinivasan, V. (1978). Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research, 5, 103–123.

Green. (1984). Hybrid conjoint analysis: The evolution of covariance structure modeling. Journal of Marketing Research, 21(2), 155–167.

Han, Y., Wang, Z., Lu, X., & Hu, B. (2020). Application of AHP to road selection. Journal of Transportation Engineering, 146(2), 04020003. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000482

Herrera-Viedma, E., Alonso, S., Chiclana, F., & Herrera, F. (2007). A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Transactions on Fuzzy Systems, 15(5), 863–877. https://doi.org/10.1109/TFUZZ.2006.889952

Hong, B. X., Ichihashi, M., & Ngoc, N. T. B. (2024). Analysis of consumer preferences for green tea products: A randomized Conjoint Analysis in Thai Nguyen, Vietnam. Sustainability, 16(11), 4521. https://doi.org/10.3390/su16114521

Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Springer. https://doi.org/10.1007/978-3-642-48318-9

IBM Corp. (2015). IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp.

Ieta, A., Silberberg, G., Kucerovsky, Z., & Greason, W. D. (2005). On scales and decision-making based on arithmetic mean. Quality & Quantity, 38(5), 559–575. https://doi.org/10.1007/s11135-005-2177-z

Igersheim, H. (2004). Liberté et choix social : Contribution à l’analyse de la liberté en économie normative (NNT:2004STR1EC03). [Doctoral dissertation, Université Louis Pasteur-Strasbourg I, France].

Ishizaka, A., & Labib, A. (2011). Review of the main developments in the Analytic Hierarchy Process. Expert Systems with Applications, 38(11), 14336–14345. https://doi.org/10.1016/j.eswa.2011.04.143

Jahanshahloo, G. R., Lotfi, F. H., & Davoodi, A. R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49(5-6), 1137–1142. https://doi.org/10.1016/j.mcm.2008.07.009

Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258. https://doi.org/10.3846/jbem.2010.12

Kuzmanovic, M., & Savic, G. (2020). Avoiding the privacy paradox using preference-based segmentation: A Conjoint Analysis approach. Electronics, 9(9), 1–21.

Liquet, J.C. (2001). Cas d’analyse conjointe. Paris, Editions TEC & DOC.

Longaray, A. A., Gomes, C. F. S., Elacoste, T., & Machado, C. M. D. S. (2019). Efficiency indicators to evaluate services in port services: A proposal using fuzzy-ahp approach. Pesquisa Operacional, 39(3), 437–456. https://doi.org/10.1590/0101-7438.2019.039.03.0437

Lou, X., & Xu, Y. (2024). Consumption of sustainable denim products: The contribution of blockchain certified eco-labels. Journal of Theoretical and Applied Electronic Commerce Research, 19, 396–411. https://doi.org/10.3390/jtaer19010021

Madzik, P., & Falt, L. (2022). State-of-the-art on analytic hierarchy process in the last 40 years: Literature review based on Latent Dirichlet Allocation topic modelling. PLOS ONE, 17(5), e0268777. https://doi.org/10.1371/journal.pone.0268777

Marcarelli, G., & Mancini, P. (2022). School and academic performance for ranking high schools: Some evidence from Italy. International Journal of the Analytic Hierarchy Process, 14(2), 2–3. https://doi.org/10.13033/ijahp.v14i2.948.

Meng, F., & Chen, X. (2015). A new method for group decision making with incomplete fuzzy preference relations. Knowledge-Based Systems, 73, 111–123. https://doi.org/10.1016/j.knosys.2014.09.011

Mi, X., Tang, M., Liao, H., Shen, W., & Lev, B. (2019). The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what’s next? Omega, 87, 205–225. https://doi.org/10.1016/j.omega.2019.01.009

Mousseau, V., Slowinski, R., & Zielniewicz, P. (2000). A user-oriented implementation of the ELECTRE-TRI method integrating preference elicitation support. Computers & Operations Research, 27(7-8), 757–777. https://doi.org/10.1016/S0305-0548(99)00117-3

Moradi, N., & Moradi, S. (2021). A method for project performance evaluation by combining the project golden triangle, BSC, AHP, and TOPSIS. International Journal of Supply and Operations Management, 8(1), 81–95.

Moradi, N., (2022). Performance evaluation of University faculty by combining BSC, AHP and TOPSIS: From the students’ perspective. International Journal of the Analytic Hierarchy Process, 14(2), 5–6. https://doi.org/10.13033/ijahp.v14i2.915

Munier, N., & Hontoria, E. (2021). Uses and limitations of the AHP method: A non-mathematical and rational analysis. In Management for professionals (pp. 41–90). Springer. https://doi.org/10.1007/978-3-030-60392-2

Ngoie, R.-B. M., Dibakidi, O., Mbaka, R., Sakulu, J.-A., & Musoni, D. (2022). Combining AHP, TOPSIS and Conjoint Analysis to rank shopping centers in the locality of Mbanza-Ngungu. [Paper presentation]. The International Symposium on the Analytic Hierarchy Process, DR Congo. https://doi.org/10.13033/isahp.y2022.025

Nguyen, T. A. V., Tucek, D., & Pham, N. T. (2023). Indicators for TQM 4.0 model: Delphi Method and Analytic Hierarchy Process (AHP) analysis. Total Quality Management & Business Excellence, 34(1-2), 220–234. https://doi.org/10.1080/14783363.2022.2039062

Ossadnik, W., Schinke, S., & Kaspar, R. H. (2016). Group aggregation techniques for Analytic Hierarchy Process and Analytic Network Process: A comparative analysis. Group Decision and Negotiation, 25, 421–457. https://doi.org/10.1007/s10726-015-9448-4

Pereira, R. C. A., da Silva Jr, O. S., de Mello Bandeira, R. A., Dos Santos, M., de Souza Rocha Jr, C., Castillo, C. D. S., ... & Muradas, F. M. (2023). Evaluation of smart sensors for subway electric motor escalators through AHP-Gaussian method. Sensors, 23(8), 4131. https://doi.org/10.3390/s23084131

Petrović, G., Mihajlović, J., Marković, D., Hashemkhani Zolfani, S., & Madić, M. (2023). Comparison of aggregation operators in the group decision-making process: A real case study of location selection problem. Sustainability, 15(10), 8229. https://doi.org/10.3390/su15108229

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009

Rodrigues, M. V. G., dos Santos, M., & Gomes, C. F. S. (2024). Selection of helicopters for offshore service using three multi-criteria decision analysis methods: AHP-TOPSIS-2N, THOR 2 and Gaussian AHP-TOPSIS-2N. Journal of Control and Decision, 1–15. https://doi.org/10.1080/23307706.2024.2302491

Roszkowska, E. (2011). Multi-criteria decision making models by applying the TOPSIS method to crisp and interval data. Multiple Criteria Decision Making/University of Economics in Katowice, 6(1), 200–230.

Roy, B. (1968). Classement et choix en présence de points de vue multiples (la méthode ELECTRE). Revue d'Informatique et de Recherche Opérationnelle (RIRO), 2(8), 57–75.
https://doi.org/10.1051/ro/196802V100571

Roy, B. (1978a). ELECTRE II : Une méthode de classement en présence de critères multiples. Cahiers du CERO, 20(1), 3–24.

Roy, B. (1978b). ELECTRE III : Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du CERO, 20(2), 5–24.

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.

Saaty, T. L. (2005). Decision making with the analytic hierarchy process: Economic, political, and social applications (Vol. 1). Springer Science+Business Media. https://doi.org/10.1007/0-387-23814-8

Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/IJSSCI.2008.017590

Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the Analytic Hierarchy Process (2nd ed.). Springer Science+Business Media. https://doi.org/10.1007/978-1-4614-3597-6

Saaty, T. L., & Vargas, L. G. (2013). Decision making with the Analytic Network Process: Economic, political, social and technological applications with Benefits, Opportunities, Costs and Risks (2nd ed.). Springer Science+Business Media. https://doi.org/10.1007/978-1-4614-7279-7

Saaty, T. L., & Vargas, L. G. (2013). The logic of priorities: applications of business, energy, health and transportation. Springer Science & Business Media.

Saaty, T.L. (1972). An eigenvalue allocation model for prioritization and planning. (Working Paper). Energy Management and Policy Center, University of Pennsylvania.

Saaty, T.L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.

Sagawe, T., Tenório, F. M., dos Santos, M., & Gomes, C. F. S. (2022). Professional potential evaluation using a multicriteria approach: An AHP-ELECTRE-TRI proposal. Procedia Computer Science, 214, 628–635. https://doi.org/10.1016/j.procs.2022.11.221

Soltanifar, M., & Kamyabi, S. (2024). Optimizing ecological development zone selection: A comparative analysis of AHP and DEA-Modified VAHP approaches in geography. In Analytical decision making and Data Envelopment Analysis: Advances and challenges (pp. 319–338). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-6972-8_15

Srinavasan, V., & Wyner, G. (1989). CASEMAP: Computer assisted self explicated Conjoint Analysis. Marketing Science, 8(3), 274–284.

Taherdoost, H., & Madanchian, M. (2023). Multi-Criteria Decision Making (MCDM) methods and concepts. Encyclopedia, 3(1), 77–87. https://doi.org/10.3390/encyclopedia3010006

Tavana, M., Soltanifar, M., & Santos-Arteaga, F. J. (2023). Analytical Hierarchy Process: Revolution and evolution. Annals of Operations Research, 326, 879–907. https://doi.org/10.1007/s10479-021-04432-2

Wan Rosanisah, W., & Abdullah, L. (2016). Aggregation methods in group decision making: A decade survey. Informatica, 40(3), 1–10. https://doi.org/10.1016/j.informatica.2016.08.003

Wang, F., Wang, H., & Cho, J. H. (2022). Consumer preference for yogurt packaging design using conjoint analysis. Sustainability, 14(6), 3463. https://doi.org/10.3390/su14063463

Zhang, J., Li, C., Ji, X., Zhang, L., & Chen, Y. (2024). Research on the application of conjoint analysis in carbon tax pricing for the sustainable development process of China. Sustainability, 16(21), 9407. https://doi.org/10.3390/su16219407

Zolfani, S. H., & Saparauskas, J. (2013). New application of SWARA method in prioritizing sustainability assessment indicators of energy system. Engineering Economics, 24(5), 408–414. https://doi.org/10.5755/j01.ee.24.5.4526
Section
Articles