FUZZY MULTI-CRITERIA DECISION-MAKING APPROAHCES FOR OPTIMAL SELECTION OF EMBEDDED SYSTEMS FOR AUTONOMOUS NAVIGATED LIGHT VEHICLES

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Jun 18, 2025
I Gusti Putu Asto Asto Buditjahjanto Sayyidul Aulia Alamsyah Maspiyah Gitut Sudarto Satria Riagung Lazuardi

Abstract

Selecting the best type of embedded system for an autonomous navigated light vehicle is complicated. The complexity arises from the need to consider criteria such as navigation accuracy, processing speed, power consumption, compatibility, and reliability when building an autonomous navigated light vehicle. This study evaluates three types of embedded systems: Arduino, Raspberry Pi, and NVIDIA Jetson. Therefore, this study aims to evaluate and select the best embedded system for an autonomous navigated light vehicle. The Fuzzy Analytic Hierarchy Process (FAHP), the Fuzzy Technique for Order Preference by Similarity to Ideal Solution (F-TOPSIS), and the Fuzzy Simple Additive Weighting (FSAW) methods were used to test and choose from between the three types of embedded systems. Each method has its advantages. The FAHP has the advantage of determining the weight of the criteria hierarchically. The F-TOPSIS and FSAW methods were used to sort and evaluate alternatives based on the set criteria. The study’s results showed that of the three methods used, Raspberry Pi is the best alternative, followed by NVIDIA Jetson and Arduino. The findings showed that Raspberry Pi excelled in navigation accuracy and processing speed, NVIDIA Jetson excelled in reliability, and Arduino excelled in power consumption and compatibility. Fuzzy MCDM is an appropriate method to use to select embedded systems for autonomous navigated light vehicles.

How to Cite

Buditjahjanto, I. G. P. A. A., Alamsyah, S. A., Maspiyah, Sudarto, G., & Lazuardi, S. R. (2025). FUZZY MULTI-CRITERIA DECISION-MAKING APPROAHCES FOR OPTIMAL SELECTION OF EMBEDDED SYSTEMS FOR AUTONOMOUS NAVIGATED LIGHT VEHICLES. International Journal of the Analytic Hierarchy Process, 17(2). https://doi.org/10.13033/ijahp.v17i2.1258

Downloads

Download data is not yet available.
Abstract 81 | PDF Downloads 82

##plugins.themes.bootstrap3.article.details##

Keywords

autonomous vehicle, fuzzy multi-criteria decision making, navigation accuracy, processing speed, power consumption, compatibility, reliability

References
Adnan Yusuf, S., Khan, A., & Souissi, R. (2024). Vehicle-to-everything (V2X) in the autonomous vehicles domain – A technical review of communication, sensor, and AI technologies for road user safety. Transportation Research Interdisciplinary Perspectives, 23, 100980. https://doi.org/10.1016/j.trip.2023.100980

Afrane, S., Ampah, J. D., Agyekum, E. B., Amoh, P. O., Yusuf, A. A., Fattah, I. M. R., Agbozo, E., Elgamli, E., Shouran, M., Mao, G., & Kamel, S. (2022). Integrated AHP-TOPSIS under a fuzzy environment for the selection of waste-to-energy technologies in Ghana: A performance analysis and socio-enviro-economic feasibility study. International Journal of Environmental Research and Public Health, 19(14), 8428. https://doi.org/10.3390/ijerph19148428

al-Sulbi, K., Chaurasia, P. K., Attaallah, A., Agrawal, A., Pandey, D., Verma, V. R., Kumar, V., & Ansari, M. T. J. (2023). A Fuzzy TOPSIS-based approach for comprehensive evaluation of bio-medical waste management: Advancing sustainability and decision-making sustainability, Sustainability, 15(16), 12565. https://doi.org/10.3390/su151612565

Anandhalli, M., & Baligar, V. P. (2018). A novel approach in real-time vehicle detection and tracking using Raspberry Pi. Alexandria Engineering Journal, 57(3), 1597–1607. https://doi.org/10.1016/j.aej.2017.06.008

Brown, N. E., Rojas, J. F., Goberville, N. A., Alzubi, H., AlRousan, Q., Wang, C., Huff, S., Rios-Torres, J., Ekti, A. R., LaClair, T. J., Meyer, R., & Asher, Z. D. (2022). Development of an energy efficient and cost effective autonomous vehicle research platform. Sensors, 22(16), 5999. https://doi.org/10.3390/s22165999

Chaudhary, S., Sharma, A., Khichar, S., Meng, Y., & Malhotra, J. (2024). Enhancing autonomous vehicle navigation using SVM-based multi-target detection with photonic radar in complex traffic scenarios. Scientific Reports, 14(1), 17339. https://doi.org/10.1038/s41598-024-66850-z

Chen, T.-Y. (2012). Comparative analysis of SAW and TOPSIS based on interval-valued fuzzy sets: Discussions on score functions and weight constraints. Expert Systems with Applications, 39(2), 1848–1861. https://doi.org/10.1016/j.eswa.2011.08.065

Chou, S.-Y., Chang, Y.-H., & Shen, C.-Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1), 132–145. https://doi.org/10.1016/j.ejor.2007.05.006

Dogan, O., Deveci, M., Canıtez, F., & Kahraman, C. (2020). A corridor selection for locating autonomous vehicles using an interval-valued intuitionistic fuzzy AHP and TOPSIS method. Soft Computing, 24(12), 8937–8953. https://doi.org/10.1007/s00500-019-04421-5


Fodor, J. & de Baets, B. (2008). Fuzzy preference modelling: Fundamentals and recent advances. In (H. Bustince, F. Herrera, & J. Montero, Eds.) Fuzzy sets and their extensions: Representation, aggregation and models, Vol. 220 (pp. 207-217). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73723-0

Giannaros, A., Karras, A., Theodorakopoulos, L., Karras, C., Kranias, P., Schizas, N., Kalogeratos, G., & Tsolis, D. (2023). Autonomous vehicles: Sophisticated attacks, safety issues, challenges, open topics, blockchain, and future directions. Journal of Cybersecurity and Privacy, 3(3), 493–543. https://doi.org/10.3390/jcp3030025

Hamadneh, J., Duleba, S., & Esztergár-Kiss, D. (2022). Stakeholder viewpoints analysis of the autonomous vehicle industry by using multi-actors multi-criteria analysis. Transport Policy, 126, 65–84. https://doi.org/10.1016/j.tranpol.2022.07.005

Hosny, K. M., Magdi, A., Salah, A., El-Komy, O., & Lashin, N. A. (2023). Internet of things applications using Raspberry-Pi: a survey. International Journal of Electrical and Computer Engineering, 13(1), 902. https://doi.org/10.11591/ijece.v13i1.pp902-910

Hsieh, T.-Y., Lu, S.-T., & Tzeng, G.-H. (2004). Fuzzy MCDM approach for planning and design tenders selection in public office buildings. International Journal of Project Management, 22(7), 573–584. https://doi.org/10.1016/j.ijproman.2004.01.002

Kabassi, K., Karydis, C., & Botonis, A. (2020). AHP, Fuzzy SAW, and Fuzzy WPM for the evaluation of cultural websites. Multimodal Technologies and Interaction, 4(1), 5. https://doi.org/10.3390/mti4010005

Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021a). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364. https://doi.org/10.1016/j.cosrev.2021.100364

Kondaveeti, H. K., Kumaravelu, N. K., Vanambathina, S. D., Mathe, S. E., & Vappangi, S. (2021b). A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Computer Science Review, 40, 100364. https://doi.org/10.1016/j.cosrev.2021.100364

Kortli, Y., Gabsi, S., Voon, L. F. C. L. Y., Jridi, M., Merzougui, M., & Atri, M. (2022). Deep embedded hybrid CNN–LSTM network for lane detection on NVIDIA Jetson Xavier NX. Knowledge-Based Systems, 240, 107941. https://doi.org/10.1016/j.knosys.2021.107941

Lam Loong Man, C. K. Y., Koonjul, Y., & Nagowah, L. (2018). A low cost autonomous unmanned ground vehicle. Future Computing and Informatics Journal, 3(2), 304–320. https://doi.org/10.1016/j.fcij.2018.10.001

Lewis, A. J., Campbell, M., & Stavroulakis, P. (2016). Performance evaluation of a cheap, open source, digital environmental monitor based on the Raspberry Pi. Measurement, 87, 228–235. https://doi.org/10.1016/j.measurement.2016.03.023

Li, Y., & Zheng, Y. R. (2020). Profiling NVIDIA Jetson embedded GPU devices for autonomous machines. Computer Science & Information Technology, 133–144. https://doi.org/10.5121/csit.2020.101811

Massimo Banzi, & Shiloh, M. (2020). Getting started with ARDUINO: The open source electronics prototypying platform, 4th edition. Make Community, LLC.

Mudaliar, M. D., & Sivakumar, N. (2020). IoT based real time energy monitoring system using Raspberry Pi. Internet of Things, 12, 100292. https://doi.org/10.1016/j.iot.2020.100292

Oltean, S.-E. (2019). Mobile robot platform with Arduino Uno and Raspberry Pi for autonomous navigation. Procedia Manufacturing, 32, 572–577. https://doi.org/10.1016/j.promfg.2019.02.254

Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Systems with Applications, 41(2), 679–693. https://doi.org/10.1016/j.eswa.2013.07.093

Peng, G., Han, L., Liu, Z., Guo, Y., Yan, J., & Jia, X. (2021). An application of fuzzy Analytic Hierarchy Process in risk evaluation model. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.715003

Roszkowska, E., & Kacprzak, D. (2016). The fuzzy saw and fuzzy TOPSIS procedures based on ordered fuzzy numbers. Information Sciences, 369, 564–584. https://doi.org/10.1016/j.ins.2016.07.044

Sethi, P., & Sarangi, S. R. (2017). Internet of things: Architectures, protocols, and applications. Journal of Electrical and Computer Engineering, 2017, 1–25. https://doi.org/10.1155/2017/9324035

Shahedi, A., Dadashpour, I., & Rezaei, M. (2023). Barriers to the sustainable adoption of autonomous vehicles in developing countries: A multi-criteria decision-making approach. Heliyon, 9(5), e15975. https://doi.org/10.1016/j.heliyon.2023.e15975

Singh, R., Gehlot, A., Raj Gupta, L., Singh, B., & Swain, M. (2020). Internet of things with Raspberry Pi and Arduino. Routledge.

Suder, J., Podbucki, K., & Marciniak, T. (2023). Power requirements evaluation of embedded devices for real-time video line detection. Energies, 16(18), 6677. https://doi.org/10.3390/en16186677

Tran, N.-T., Trinh, V.-L., & Chung, C.-K. (2024). An integrated approach of fuzzy AHP-TOPSIS for multi-criteria decision-making in industrial robot selection. Processes, 12(8), 1723. https://doi.org/10.3390/pr12081723

Veeramanickam, M. R. M., Venkatesh, B., Bewoor, L. A., Bhowte, Y. W., Moholkar, K., & Bangare, J. L. (2022). IoT based smart parking model using Arduino UNO with FCFS priority scheduling. Measurement: Sensors, 24, 100524. https://doi.org/10.1016/j.measen.2022.100524

Section
Articles