Published Dec 8, 2022
Ravi Raj Shrestha Anushilan Acharya Niroj Karmacharya Mira Sapkota Binay Paudyal Prasant Basnet Sushil Timilsina Hitendra Dev Shakya


Solar-based renewable energy adoption is in its early stage in the power system of Nepal complying with its commitment to carbon neutrality. The government of Nepal has declared a goal of setting up solar power plants of at least 200 MW in Madhesh Province, but the selection of optimal sites will be the decisive factor in achieving this goal. Therefore, rigorous investigation is necessary for optimal site selection. A three-step framework combining the Analytic Hierarchy Process (AHP) and the Geographical Information System (GIS) has been adopted to identify the optimal location for solar power plant installation in Madhesh Province. The framework includes the creation of weighted individual raster images for the different criteria, images of restricted areas for solar installation, and a combination of all the rasters into a single raster using GIS-based software. The weights of the criteria and sub-criteria have been evaluated using the AHP model, which is an expert judgments-based model. The criteria considered were solar irradiance, annual mean temperature, distance from the road, distance from the substation, distance from the urban area, elevation, aspect, and land use. The results were graded from the least preferred area to the most highly suitable area. The most highly suitable areas were in the Saptari, Siraha, Dhanusa, and Mahottari districts, while the districts in the western region of the province had less suitable areas. Thus, the province’s eastern region is most suitable for installing solar power plants.

How to Cite

Shrestha, R. R., Acharya, A. ., Karmacharya, N., Sapkota, M., Paudyal, B., Basnet, P. ., Timilsina, S., & Shakya, H. D. (2022). APPLICATION OF AHP AND GIS FOR OPTIMAL SOLAR SITE IDENTIFICATION IN MADHESH PROVINCE, NEPAL. International Journal of the Analytic Hierarchy Process, 14(3).


Download data is not yet available.
Abstract 162 | PDF Downloads 139



AHP, GIS, Renewable Energy, Solar Power Plant

Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458–466. Doi:10.1016/j.renene.2013.10.001

Akkas, O. P., Erten, M. Y., Cam, E., & Inanc, N. (2017). Optimal site selection for a solar power plant in the Central Anatolian region of Turkey. International Journal of Photoenergy, 2017, 1-13. Doi:10.1155/2017/7452715

Al Garni, H. Z., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206, 1225–1240. Doi:10.1016/j.apenergy.2017.10.024

Albraheem, L., & Alabdulkarim, L. (2021). Geospatial analysis of solar energy in Riyadh using a GIS-AHP based technique. ISPRS International Journal of Geo-Information, 10(5), 291. Doi:10.3390/ijgi10050291

Ali, S., Taweekun, J., Techato, K., Waewsak, J., & Gyawali, S. (2019). GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renewable Energy, 132, 1360–1372. Doi:10.1016/j.renene.2018.09.035

Aly, A., Jensen, S. S., & Pedersen, A. B. (2017). Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renewable Energy, 113, 159-175. Doi:

Arán Carrión, J., Espín Estrella, A., Aznar Dols, F., Zamorano Toro, M., Rodríguez, M., & Ramos Ridao, A. (2008). Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renewable and Sustainable Energy Reviews, 12(9), 2358–2380. Doi:10.1016/j.rser.2007.06.011

Choi, Y., Suh, J., & Kim, S. M. (2019). GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Applied Sciences (Switzerland), 9(9), 1-27. Doi:10.3390/app9091960

Department of Electricity Development. (2021). License Status. Retrieved from

Development, M. o. (2021). Energy Profile: Province 2, Lumbini and Karnali. Retrieved from

Doorga, J. R., Rughooputh, S. D., & Boojhawon, R. (2019). Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renewable Energy, 133, 1201–1219. Doi:10.1016/J.RENENE.2018.08.105

ESRI. (2021). What is GIS? Retrieved from

Gašparović, I., & Gašparović, M. (2019). Determining optimal solar power plant locations based on remote sensing and GIS methods: A case study from Croatia. Remote Sensing, 11(12), 1-18. Doi:10.3390/rs11121481

International Energy Agency. (2021). Global Energy Review 2021. Retrieved from

Kanichakra, L. (2018). Geographic Information Systems (GIS) Defined. Geographic Information Systems (GIS) Defined. Retrieved from

Munkhbat, U., & Choi, Y. (2021). GIS-based site suitability analysis for solar power systems in Mongolia. Applied Sciences (Switzerland), 11(9), 1-13. Doi:10.3390/app11093748

Nebey, A. H., Taye, B. Z., & Workineh, T. G. (2020). Site suitability analysis of solar PV power generation in South Gondar, Amhara Region. Journal of Energy, 2020, 1–15. Doi:10.1155/2020/3519257

Nepal Electricity Authority. (2021). A year in review: fiscal year 2020/2021.

Nepal Outlook. (2020). Retrieved from

Paneru, G. R. (2016). GIS-based identification of potential sites for installing solar energy collection plants in Kathmandu Valley, Nepal.

Prieto-Amparán, J. A., Pinedo-Alvarez, A., Morales-Nieto, C. R., Valles-Aragón, M. C., Álvarez-Holguín, A., & Villarreal-Guerrero, F. (2021). A regional GIS-assisted multi-criteria evaluation of site-suitability for the development of solar farms. Land, 10, 1–19. Doi:10.3390/land10020217

Timilsina, R.H., Ojha, G.P., Nepali, P.B. & Tiwari, U. (2019). Agriculture and land use in Nepal: Prospects and impacts on food security. Journal of Agriculture and Forestry University, 3, 1-9.

Ruiz, H. S., Sunarso, A., Ibrahim-Bathis, K., Murti, S. A., & Budiarto, I. (2020). GIS-AHP Multi Criteria Decision Analysis for the optimal location of solar energy plants at Indonesia. Energy Reports, 6, 3249–3263. Doi:10.1016/j.egyr.2020.11.198

Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & Socorro García-Cascales, M. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544–556. Doi:10.1016/j.rser.2013.03.019

Saaty. (1980). The analytic process: planning, priority setting, resources allocation. McGraw Hill.

Tahri, M., Hakdaoui, M., & Maanan, M. (2015). The evaluation of solar farm locations applying Geographic Information System and Multi-Criteria Decision-Making methods: Case study in southern Morocco. Renewable and Sustainable Energy Reviews, 51, 1354–1362. Doi:10.1016/j.rser.2015.07.054

The World Bank. (2017). Solar resource and photovoltaic potential of Nepal. Tech. rep.

Uyan, M. (2013, December 1). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11–17. Doi:10.1016/J.RSER.2013.07.042

Water and Energy Commission Secretariat (2010). Energy Sector Synopsis Report.

Watson, J. J., & Hudson, M. D. (2015). Regional scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning, 138, 20–31. Doi:10.1016/j.landurbplan.2015.02.001

Xin, Z., Chen, L., Yang, Y., Miao, K., & Li, Z. (2019). Application of AHP-DEA model in comprehensive evaluation of distribution network planning reliability. iSPEC 2019 - 2019 IEEE Sustainable Power and Energy Conference: Grid Modernization for Energy Revolution, Proceedings, 290–294. Doi:10.1109/iSPEC48194.2019.8975139

Yushchenko, A., de Bono, A., Chatenoux, B., Patel, M. K., & Ray, N. (2018). GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renewable and Sustainable Energy Reviews, 81, 2088–2103. Doi:10.1016/j.rser.2017.06.021