Published Sep 3, 2021
Engin Akman Abdullah Karaman


Industry 4.0 (I4.0) marks a new era in manufacturing and has attracted notable attention from practitioners and researchers. Current production processes are being transformed towards interconnecting the elements of manufacturing systems as a result of digitization. Adopting new technologies is an indispensable practice to compete and sustain business concerns. In this paper, the Analytical Hierarchy Process (AHP), a multi-criteria decision-making methodology, is employed to evaluate and weigh the nine pillars that are the building blocks of an I4.0 system. The assessment model suggests three dimensions, nine pillars, and thirty-four sub-pillars which are evaluated by fourteen I4.0 professionals responding to a pairwise questionnaire. The results are important as they reflect the opinions of the professionals and can help define strategies for companies investing in I4.0 technologies by elucidating the relative impacts of factors in an I4.0 environment.


Download data is not yet available.
Abstract 520 | PDF Downloads 13



Industry 4.0, nine pillars, Cyber-Physical Systems, Industrial Internet of Things, Multi-Criteria Decision-Making, AHP

Additive Manufacturing Research Group (2019). The 7 categories of additive manufacturing. Retrieved from https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/

Akman, E., & Dagdeviren, M. (2018). Discovering what makes a SME website good for international trade. Technological and Economic Development of Economy, 24(3), 1063-1079. Doi: https://doi.org/10.3846/20294913.2016.1266709

Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A literature review on technologies for manufacturing systems. Engineering Science and Technology, an International Journal, 22(3), 899-919. Doi: https://doi.org/10.1016/j.jestch.2019.01.006

Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of manufacturing execution systems (MES). Journal of Innovation Management, 3(4), 16-21. Doi: https://doi.org/10.24840/2183-0606_003.004_0003

Bahrin, M. A. K., Othman, M. F., Azli, N. N., & Talib, M. F. (2016). Industry 4.0: A review on industrial automation and robotic. Jurnal Teknologi, 78(6-13), 137-143. Doi: https://doi.org/10.11113/jt.v78.9285

Bai, C., Dallasega, P., Orzes, G., & Sarkis, J. (2020). Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics, 229, 107776. Doi: https://doi.org/10.1016/j.ijpe.2020.107776

Blanco-Novoa, O., Fernandez-Carames, T. M., Fraga-Lamas, P., & Vilar-Montesinos, M. A. (2018). A practical evaluation of commercial industrial augmented reality systems in an industry 4.0 shipyard. IEEE Access, 6, 8201-8218. Doi: https://doi.org/10.1109/access.2018.2802699

Bordeleau, F. E., Mosconi, E., & Santa-Eulalia, L. A. (2018, January). Business Intelligence in Industry 4.0: State of the art and research opportunities. In Proceedings of the 51st Hawaii International Conference on System Sciences. Doi: https://doi.org/10.24251/HICSS.2018.495

Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. International Journal of Mechanical, Industrial Science and Engineering, 8(1), 37-44. Doi: https://doi.org/10.5281/zenodo.1336426

Calabrese, A., Levialdi Ghiron, N., & Tiburzi, L. (2020). ‘Evolutions’ and ‘revolutions’ in manufacturers’ implementation of industry 4.0: a literature review, a multiple case study, and a conceptual framework. Production Planning & Control, 1-15. Doi: https://doi.org/10.1080/09537287.2020.1719715

Chong, L., Ramakrishna, S., & Singh, S. (2018). A review of digital manufacturing-based hybrid additive manufacturing processes. The International Journal of Advanced Manufacturing Technology, 95(5-8), 2281-2300. Doi: https://doi.org/10.1007/s00170-017-1345-3

Contreras-Masse, R., Ochoa-Zezzatti, A., García, V., & Pérez-Dominguez, L. (2020). Implementing a novel use of multicriteria decision analysis to select IIoT platforms for smart manufacturing. Symmetry, 12(3), 368. Doi: https://doi.org/10.3390/sym12030368

Da Silva, V. L., Kovaleski, J. L., & Pagani, R. N. (2019). Technology transfer in the supply chain oriented to industry 4.0: a literature review. Technology Analysis & Strategic Management, 31(5), 546-562. Doi: https://doi.org/10.1080/09537325.2018.1524135

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394. Doi: https://doi.org/10.1016/j.ijpe.2018.08.019

Deloitte Development LLC (Firm). (2020). The fourth industrial revolution: at the intersection of readiness and responsibility.

Dopico, M., Gomez, A., De la Fuente, D., García, N., Rosillo, R., & Puche, J. (2016). A vision of industry 4.0 from an artificial intelligence point of view. In Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 407). The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).

Erdogan, M., Ozkan, B., Karasan, A., & Kaya, I. (2018). Selecting the best strategy for industry 4.0 applications with a case study. In Industrial engineering in the industry 4.0 era (pp. 109-119). Springer, Cham.

Flatt, H., Schriegel, S., Jasperneite, J., Trsek, H., & Adamczyk, H. (2016). Analysis of the cyber-security of industry 4.0 technologies based on RAMI 4.0 and identification of requirements. In 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-4). IEEE. Doi: https://doi.org/10.1109/ETFA.2016.7733634

Fraga-Lamas, P., Fernández-Caramés, T. M., Blanco-Novoa, Ó., & Vilar-Montesinos, M. A. (2018). A review on industrial augmented reality systems for the industry 4.0 shipyard. IEEE Access, 6, 13358-13375. Doi: https://doi.org/10.1109/ACCESS.2018.2808326

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26. Doi: https://doi.org/10.1016/j.ijpe.2019.01.004

Gauvreau, R. P. (2011). Easy Access to everything-- or how the web can bring it all together. Iron & Steel Technology, 8(1), 63-69.

Ghobakhloo, M. (2020). Determinants of information and digital technology implementation for smart manufacturing. International Journal of Production Research, 58(8), 2384-2405. Doi: https://doi.org/10.1080/00207543.2019.1630775

Gilchrist, A. (2016). Industry 4.0: the industrial internet of things. Apress.

Gonzalez, A. G., Alves, M. V., Viana, G. S., Carvalho, L. K., & Basilio, J. C. (2018). Supervisory control-based navigation architecture: a new framework for autonomous robots in industry 4.0 environments. IEEE Transactions on Industrial Informatics, 14(4), 1732-1743. Doi: https://doi.org/10.1109/TII.2017.2788079

He, H., Maple, C., Watson, T., Tiwari, A., Mehnen, J., Jin, Y., & Gabrys, B. (2016). The security challenges in the IoT enabled cyber-physical systems and opportunities for evolutionary computing & other computational intelligence. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 1015-1021). IEEE. Doi: https://doi.org/10.1109/CEC.2016.7743900

Hermann, M., Pentek, T., & Otto, B. (2016, January). Design principles for industry 4.0 scenarios. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 3928-3937). IEEE. Doi: https://doi.org/10.1109/HICSS.2016.488

Hozdic, E. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies, 7(1), 28-35.

International Organization for Standardization (2015). Additive manufacturing -- General principles -- Terminology (ISO/ASTM 52900:2015 (ASTM F2792)). Retrieved from https://www.iso.org/standard/69669.html

Javaid, M., Haleem, A., Vaishya, R., Bahl, S., Suman, R., & Vaish, A. (2020). Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 419-422. Doi: https://doi.org/10.1016/j.dsx.2020.04.032

Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion.

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. Doi: https://doi.org/10.1016/j.psep.2018.05.009

Karaman, A. S., & Akman, E. (2018). Taking-off corporate social responsibility programs: An AHP application in airline industry. Journal of Air Transport Management, 68, 187-197. Doi: https://doi.org/10.1016/j.jairtraman.2017.06.012

Kaur, H., & Singh, S. P. (2018). Heuristic modeling for sustainable procurement and logistics in a supply chain using big data. Computers & Operations Research, 98, 301-321. Doi: https://doi.org/10.1016/j.cor.2017.05.008

Kobara, K. (2016). Cyber physical security for industrial control systems and IoT. IEICE TRANSACTIONS on Information and Systems, 99(4), 787-795. Doi: https://doi.org/10.1587/transinf.2015ICI0001

Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239-242. Doi: https://doi.org/10.1007/s11576-014-0424-4

Lee, J., Bagheri, B., & Kao, H. A. (2014a, July). Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. In Proceeding of International Conference on Industrial Informatics (INDIN) (pp. 1-6).

Lee, J., Kao, H. A., & Yang, S. (2014b). Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP, 16, 3-8. Doi: https://doi.org/10.1016/j.procir.2014.02.001

Liao, Y., Deschamps, F., Loures, E. D. F. R., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609-3629. Doi: https://doi.org/10.1080/00207543.2017.1308576

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1-10. Doi: https://doi.org/10.1016/j.jii.2017.04.005

Luthra, S., & Mangla, S. K. (2018). Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. Process Safety and Environmental Protection, 117, 168-179. Doi: https://doi.org/10.1016/j.psep.2018.04.018

Manfredi, D., Calignano, F., Krishnan, M., Canali, R., Ambrosio, E. P., Biamino, S., ... & Fino, P. (2014). Additive manufacturing of Al alloys and aluminium matrix composites (AMCs). Light Metal Alloys Applications, 11, 3-34. Doi: https://doi.org/10.5772/58534

Marr, B. (2015). Big Data: 20 mind-boggling facts everyone must read. Forbes Magazine.

Marr, B. (2016). What everyone must know about industry 4.0. Forbes Tech.

Mercer, D., (2019). Global Connected and IoT Device Forecast Update Report, Strategy Analytics.

Mohammad, E., AlBarakah, L., Kudair, S., & Karaman, A. S. (2021, March). Evaluating the Industry 4.0 readiness of manufacturing companies: A case study in Kuwait. In 11th International Conference on Industrial Engineering and Operations Management, IEOM 2021, Singapore (pp. 6625-6636). IEOM Society.

Moreno, A., Velez, G., Ardanza, A., Barandiaran, I., de Infante, Á. R., & Chopitea, R. (2017). Virtualisation process of a sheet metal punching machine within the Industry 4.0 vision. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(2), 365-373. Doi:10.1007/s12008-016-0319-2.

Motyl, B., Baronio, G., Uberti, S., Speranza, D., & Filippi, S. (2017). How will change the future engineers’ skills in the Industry 4.0 framework? A questionnaire survey. Procedia Manufacturing, 11, 1501-1509. Doi: https://doi.org/10.1016/j.promfg.2017.07.282

Mourtzis, D., Doukas, M., & Bernidaki, D. (2014). Simulation in manufacturing: Review and challenges. Procedia CIRP, 25, 213-229. Doi: https://doi.org/10.1016/j.procir.2014.10.032

Mourtzis, D., Zogopoulos, V., & Vlachou, E. (2017). Augmented reality application to support remote maintenance as a service in the robotics industry. Procedia CIRP, 63, 46-51. Doi: https://doi.org/10.1016/j.procir.2017.03.154

Müller, J. M., Buliga, O., & Voigt, K. I. (2018). Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technological Forecasting and Social Change, 132, 2-17. Doi: https://doi.org/10.1016/j.techfore.2017.12.019

Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: Literature review and analysis. Journal of Manufacturing Systems, 33(2), 241-261. Doi: https://doi.org/10.1016/j.jmsy.2013.12.007

Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in cps-based production systems. Procedia Manufacturing, 11, 939-948. Doi: https://doi.org/10.1016/j.promfg.2017.07.198

Öberseder, M., Schlegelmilch, B. B. and Murphy, P. E. (2013). CSR practices and consumer perceptions. Journal of Business Research, 66(10), 1839-1851. Doi: https://doi.org/10.1016/j.jbusres.2013.02.005

Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127-182. Doi: https://doi.org/10.1007/s10845-018-1433-8

Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., de Amicis, R., ... & Vallarino, I. (2015). Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Computer Graphics and Applications, 35(2), 26-40. Doi: https://doi.org/10.1109/MCG.2015.45

Prause, G. (2015). Sustainable business models and structures for Industry 4.0. Journal of Security & Sustainability Issues, 5(2), 159-169. Doi: https://doi.org/10.9770/jssi.2015.5.2(3)

Press, G. (2013). A very short history of big data. Forbes Tech Magazine.

Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. IEEE Access, 6, 3585-3593. Doi: https://doi.org/0.1109/ACCESS.2018.2793265

Rodič, B. (2017). Industry 4.0 and the new simulation modelling paradigm. Organizacija, 50(3), 193-207. Doi: https://doi.org/10.1515/orga-2017-0017

Rosa, P., Sassanelli, C., Urbinati, A., Chiaroni, D., & Terzi, S. (2020). Assessing relations between Circular Economy and Industry 4.0: a systematic literature review. International Journal of Production Research, 58(6), 1662-1687. Doi: https://doi.org/10.1080/00207543.2019.1680896

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 9(1), 54-89.

Saaty, T. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. Pittsburgh PA: University of Pittsburgh.

Sadeghi, A. R., Wachsmann, C., & Waidner, M. (2015, June). Security and privacy challenges in industrial internet of things. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (pp. 1-6). IEEE. Doi: https://doi.org/10.1145/2744769.2747942

Schleich, B., Anwer, N., Mathieu, L., & Wartzack, S. (2017). Shaping the digital twin for design and production engineering. CIRP Annals, 66(1), 141-144. Doi: https://doi.org/10.1016/j.cirp.2017.04.040

Singh, J., Garg, D., & Luthra, S. (2018). An analysis of critical success factors for Industry 4.0: An application of Analytical Hierarchy Process. Industrial Engineering Journal, 11(9), 1-15.

Sony, M., & Naik, S. (2020). Critical factors for the successful implementation of Industry 4.0: a review and future research direction. Production Planning & Control, 31(10), 799-815. Doi: https://doi.org/10.1080/09537287.2019.1691278

Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP, 40, 536-541. Doi: https://doi.org/10.1016/j.procir.2016.01.129

Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157-169. Doi: https://doi.org/10.1016/j.jmsy.2018.01.006

Thames, L., & Schaefer, D. (2016). Software-defined cloud manufacturing for industry 4.0. Procedia CIRP, 52, 12-17. Doi: https://doi.org/10.1016/j.procir.2016.07.041

Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22-37. Doi: https://doi.org/10.1016/j.mattod.2017.07.001

Uhlemann, T. H. J., Lehmann, C., & Steinhilper, R. (2017). The digital twin: Realizing the cyber-physical production system for industry 4.0. Procedia CIRP, 61, 335-340. Doi: https://doi.org/10.1016/j.procir.2016.11.152

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0–a glimpse. Procedia Manufacturing, 20, 233-238. Doi: https://doi.org/10.1016/j.promfg.2018.02.034

Vogel-Heuser, B., & Hess, D. (2016). Guest editorial industry 4.0–prerequisites and visions. IEEE Transactions on Automation Science and Engineering, 13(2), 411-413. Doi: https://doi.org/10.1109/tase.2016.2523639

Vrochidis, S., Papadopoulos, S., Moumtzidou, A., Sidiropoulos, P., Pianta, E., & Kompatsiaris, I. (2010). Towards content-based patent image retrieval: A framework perspective. World Patent Information, 32(2), 94-106. Doi: https://doi.org/10.1016/j.wpi.2009.05.010

Waidner, M., & Kasper, M. (2016, March). Security in industrie 4.0-challenges and solutions for the fourth industrial revolution. In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1303-1308). IEEE.

Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., & Vasilakos, A. V. (2016). Software-defined industrial internet of things in the context of industry 4.0. IEEE Sensors Journal, 16(20), 7373-7380. Doi: https://doi.org/10.1109/JSEN.2016.2565621

Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data-based feedback and coordination. Computer Networks, 101, 158-168. Doi: https://doi.org/10.1016/j.comnet.2015.12.017

Wang, L., & Wang, G. (2016). Big data in cyber-physical systems, digital manufacturing and industry 4.0. International Journal of Engineering and Manufacturing (IJEM), 6(4), 1-8. Doi: https://doi.org/10.5815/ijem.2016.04.01

Weyer, S., Meyer, T., Ohmer, M., Gorecky, D., & Zühlke, D. (2016). Future modeling and simulation of CPS-based factories: an example from the automotive industry. IFAC-PapersOnLine, 49(31), 97-102. Doi: https://doi.org/10.1016/j.ifacol.2016.12.168

Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards Industry 4.0-Standardization as the crucial challenge for highly modular, multi-vendor production systems. Ifac-Papersonline, 48(3), 579-584. Doi: https://doi.org/10.1016/j.ifacol.2015.06.143

Wollschlaeger, M., Sauter, T., & Jasperneite, J. (2017). The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Industrial Electronics Magazine, 11(1), 17-27. Doi: https://doi.org/10.1109/mie.2017.2649104

Xu, J., Huang, E., Hsieh, L., Lee, L. H., Jia, Q. S., & Chen, C. H. (2016). Simulation optimization in the era of Industrial 4.0 and the Industrial Internet. Journal of Simulation, 10(4), 310-320. Doi: https://doi.org/10.1057/s41273-016-0037-6

Zawadzki, P., & Żywicki, K. (2016). Smart product design and production control for effective mass customization in the Industry 4.0 concept. Management and Production Engineering Review, 7(3), 105-112. Doi: https://doi.org/10.1515/mper-2016-0030

Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3(5), 616-630. Doi: https://doi.org/10.1016/J.ENG.2017.05.015

Zhou, K., Liu, T., & Zhou, L. (2015, August). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (pp. 2147-2152). IEEE. Doi: https://doi.org/10.1109/FSKD.2015.7382284