IDENTIFYING THE MOST SUITABLE SUSTAINABLE ENERGY SYSTEM FOR NEPAL USING ANALYTIC HIERARCHY PROCESS
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
The issue of climate change and energy crisis can be resolved by the advancement of sustainable energy systems. The process of energy development in developing countries with a poor economy is complicated. One has to consider numerous factors and sub-factors which are important for the system to be acceptable to the multiple stakeholders. Involvement of multiple entities makes the process a real case of Multi Criteria Decision Making (MCDM). This study deals with identification of various stakeholders, factors, sub-factors and alternatives associated with sustainable energy selection in Nepal. The Analytic Hierarchy Process (AHP) has been used as a tool to deal with the MCDM problem in this research. Prioritization of alternatives has been obtained with the application of AHP. Further, the analysis has also been done based on the perception of multiple stakeholder groups. The result shows that politicians are the most important (61%) among the stakeholders for the development of sustainable energy in Nepal. Among the alternatives, the majority of the respondents believe that biogas should be given the highest priority.
How to Cite
Downloads
##plugins.themes.bootstrap3.article.details##
AHP, MCDM, sustainable, energy systems
AEPC. (2013). Study on role of renewable energy technologies in climate change mitigation and adaptation options in Nepal. Alternative Energy Promotion Center, Nepal.
Ahmad S. et al. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458. doi: http://dx.doi.org/10.1016/j.renene.2013.10.001
Akella A. K. et al. (2008). Social, economical and environmental impacts of renewable energy systems. Renewable Energy, 34, 390–396. doi: http://dx.doi.org/10.1016/j.renene.2008.05.002
Amer, M. & Diam T. (2011). Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy for Sustainable Development, 15, 420. doi: http://dx.doi.org/10.1016/j.esd.2011.09.001
Arent D.J. et al., (2011). The status and prospects of renewable energy for combating global warming. Energy Economics, 33, 584. doi: http://dx.doi.org/10.1016/j.eneco.2010.11.003
Bhattarai, S. & Fujiwara, O. (1995). Evaluation of appropriate scale of hydropower development for Nepal: Analytical Hierarchy Process approach. Infrastructure Planning and Management Program, Asian Institute of Technology.
Cristóbal, S.J.R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renewable Energy, 36, 498. doi: http://dx.doi.org/10.1016/j.renene.2010.07.031
Daniel J. et al. (2010). Evaluation of the significant renewable energy resources in India using Analytical Hierarchy Process. Springer. doi: 10.1007/978-3-642-04045-0_2
Edenhofer. O. et al. (2012). IPCC special report renewable energy sources and climate change mitigation. Cambridge, United Kingdom New York, USA: Cambridge University Press.
IPCC. (2001). Climate change, impacts, adaptation and vulnerability, report of the working group II, UK: Cambridge University Press, 967. Doi: http://dx.doi.org/10.1016/S0168-1923(03)00039-X
IPCC. (2011). Summary for policymakers. In: IPCC special report on renewable energy sources and climate change mitigation. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Kabir, A.B.M.Z. et al. (2003). Selection of renewable energy sources using Analytic Hierarchy Process. ISAHP 2003, Bali, Indonesia.
Luthra, S. et al. (2015). Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renewable and Sustainable Energy Reviews, 41,762. doi: http://dx.doi.org/10.1016/j.rser.2014.08.077
Mateo, J.R.S.C. (2012), Multi-criteria analysis in the renewable energy industry. London: Springer-Verlag Limited. doi: 10.1007/978-1-4471-2346-0
Mirza U.K. et al. (2009). Identifying and addressing barriers to renewable energy development in Pakistan. Renewable and Sustainable Energy Reviews, 13, 927. doi: http://dx.doi.org/10.1016/j.rser.2007.11.006
Moghaddama E.A. et al. (2015). Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Processing Technology, 132, 74–82. doi: http://dx.doi.org/10.1016/j.fuproc.2014.12.014
MoSTE (2014), Second national communication to United Nations Framework Convention on Climate Change. Ministry of Science and Technology, Government of Nepal.
Nachtnebel, H.P. & Singh, R.P.(2015). Prioritizing hydropower development using Analytical Hierarchy Process (AHP) - A case study of Nepal. International Journal of the Analytic Hierarchy Process, 7(2), 313-336. doi: http://dx.doi.org/10.13033/ijahp.v7i2.253
NEA (2014). Annual report. Nepal Electricity Authority.
NREL (1999), Biofuels: A Solution for Climate Change, U.S. Department of Energy.
O’Connor P.A. (2009). Energy transitions. Boston University.
Pohekar S.D.et al. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8, 365. doi: http://dx.doi.org/10.1016/j.rser.2003.12.007
Polatidis, H. H. et al. (2006). Selecting an appropriate Multi-Criteria Decision Analysis technique for renewable energy planning. Energy Sources, 1,181–193. doi: http://dx.doi.org/10.1080/009083190881607
Richards, G.et al. (2012). Barriers to renewable energy development: A case study of large-scale wind energy in Saskatchewan, Canada. Energy Policy, 42, 691. Doi: http://dx.doi.org/10.1016/j.enpol.2011.12.049
Saaty, T. L. (2008). Decision making with the Analytic Hierarchy Process. International Journal of Services Sciences, 1(1), 83-98. doi: http://dx.doi.org/10.1504/IJSSCI.2008.017590
Sapkota A. et al (2014). Role of renewable energy technologies in rural communities’ adaptation to climate change in Nepal. Renewable Energy, 68, 79. doi: http://dx.doi.org/10.1016/j.jiec.2009.01.002
Sapkota,P. & Kim, H.(2009). Zinc–air fuel cell, a potential candidate for alternative energy. Journal of Industrial and Engineering Chemistry, 15, 445. doi: http://dx.doi.org/10.1016/j.jiec.2010.01.024
Sapkota, P. & Kim, H.(2010). An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators, Journal of Industrial and Engineering Chemistry, 16, 39. doi: http://dx.doi.org/10.1016/j.jiec.2010.01.024
Theodorou S. et al. (2010). The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus: A review. Energy Policy, 38, 7783. doi: http://dx.doi.org/10.1016/j.enpol.2010.08.038
Terrados, J. et al. (2010). Energy planning: A sustainable approach. Spain: IDEA Research Group, University of Jaén.
USDA. ( 2014). Biogas opportunities roadmap. U.S. Department of Agriculture, U.S. Environmental Protection Agency, U.S. Department of Energy.
Wang, J.J. et al. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13, 2263. doi: http://dx.doi.org/10.1016/j.rser.2009.06.021
Wang, Q. et al. (2010). Barriers and opportunities of using the clean development mechanism to advance renewable energy development in China. Renewable and Sustainable Energy Reviews, 14, 1989. doi: http://dx.doi.org/10.1016/j.rser.2010.03.023
Wee H. M. et al. (2012). Renewable energy supply chains, performance, application barriers, and strategies for further development. Renewable and Sustainable Energy Reviews, 16, 5451. doi: http://dx.doi.org/10.1016/j.rser.2012.06.006
Yadoo, A. & Cruickshank, H. (2012). The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya. Energy Policy, 42, 591. doi: http://dx.doi.org/10.1016/j.enpol.2011.12.029
Yuksel, I. (2008). Global warming and renewable energy sources for sustainable development in Turkey. Renewable Energy, 33, 802. doi: http://dx.doi.org/10.1016/j.renene.2007.05.040
Copyright of all articles published in IJAHP is transferred to Creative Decisions Foundation (CDF). However, the author(s) reserve the following:
- All proprietary rights other than copyright, such as patent rights.
- The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In case of whole articles, such third parties must obtain permission from CDF as well. However, CDF may grant rights with respect to journal issues as a whole.
- The right to use all or parts of this article in future works of their own, such as lectures, press releases, reviews, textbooks, or reprint books.
- The authors affirm that the article has been neither copyrighted nor published, that it is not being submitted for publication elsewhere, and that if the work is officially sponsored, it has been released for open publication.
The only exception to the statements in the paragraph above is the following: If an article published in IJAHP contains copyrighted material, such as a teaching case, as an appendix, then the copyright (and all commercial rights) of such material remains with the original copyright holder.
CDF will receive permission for publication of copyrighted material in IJAHP. This permission is not transferable to third parties. Permission to make electronic and paper copies of part or all of the articles, including all computer files that are linked to the articles, for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage.
This permission does not apply to previously copyrighted material, such as teaching cases. In paper copies of the article, the copyright notice and the title of the publication and its date should be visible. To copy otherwise is permitted provided that a per-copy fee is paid.
To republish, to post on servers, or redistribute to lists requires that you post a link to the IJAHP article, which is available in open access delivery mode. Do not upload the article itself.
Authors are permitted to present a talk, based on a paper submitted to or accepted by IJAHP, at a conference where the paper would not be published in a copyrighted publication either before or after the conference and where the author did not assign copyright to the conference or related publisher.