Published Sep 19, 2016
Prabal Sapkota Martina Pokharel Madhav Prasad Pandey


The issue of climate change and energy crisis can be resolved by the advancement of sustainable energy systems. The process of energy development in developing countries with a poor economy is complicated. One has to consider numerous factors and sub-factors which are important for the system to be acceptable to the multiple stakeholders. Involvement of multiple entities makes the process a real case of Multi Criteria Decision Making (MCDM). This study deals with identification of various stakeholders, factors, sub-factors and alternatives associated with sustainable energy selection in Nepal. The Analytic Hierarchy Process (AHP) has been used as a tool to deal with the MCDM problem in this research. Prioritization of alternatives has been obtained with the application of AHP. Further, the analysis has also been done based on the perception of multiple stakeholder groups. The result shows that politicians are the most important (61%) among the stakeholders for the development of sustainable energy in Nepal. Among the alternatives, the majority of the respondents believe that biogas should be given the highest priority.


Download data is not yet available.
Abstract 1626 | PDF Downloads 71



AHP, MCDM, sustainable, energy systems

Abbasi T. et al. (2010). Biomass energy and the environmental impacts associated with its production and utilization. Renewable and Sustainable Energy Reviews, 14(3), 919–937. doi:

AEPC. (2013). Study on role of renewable energy technologies in climate change mitigation and adaptation options in Nepal. Alternative Energy Promotion Center, Nepal.

Ahmad S. et al. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458. doi:

Akella A. K. et al. (2008). Social, economical and environmental impacts of renewable energy systems. Renewable Energy, 34, 390–396. doi:

Amer, M. & Diam T. (2011). Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy for Sustainable Development, 15, 420. doi:

Arent D.J. et al., (2011). The status and prospects of renewable energy for combating global warming. Energy Economics, 33, 584. doi:

Bhattarai, S. & Fujiwara, O. (1995). Evaluation of appropriate scale of hydropower development for Nepal: Analytical Hierarchy Process approach. Infrastructure Planning and Management Program, Asian Institute of Technology.

Cristóbal, S.J.R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renewable Energy, 36, 498. doi:

Daniel J. et al. (2010). Evaluation of the significant renewable energy resources in India using Analytical Hierarchy Process. Springer. doi: 10.1007/978-3-642-04045-0_2

Edenhofer. O. et al. (2012). IPCC special report renewable energy sources and climate change mitigation. Cambridge, United Kingdom New York, USA: Cambridge University Press.

IPCC. (2001). Climate change, impacts, adaptation and vulnerability, report of the working group II, UK: Cambridge University Press, 967. Doi:

IPCC. (2011). Summary for policymakers. In: IPCC special report on renewable energy sources and climate change mitigation. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

Kabir, A.B.M.Z. et al. (2003). Selection of renewable energy sources using Analytic Hierarchy Process. ISAHP 2003, Bali, Indonesia.

Luthra, S. et al. (2015). Barriers to renewable/sustainable energy technologies adoption: Indian perspective. Renewable and Sustainable Energy Reviews, 41,762. doi:

Mateo, J.R.S.C. (2012), Multi-criteria analysis in the renewable energy industry. London: Springer-Verlag Limited. doi: 10.1007/978-1-4471-2346-0

Mirza U.K. et al. (2009). Identifying and addressing barriers to renewable energy development in Pakistan. Renewable and Sustainable Energy Reviews, 13, 927. doi:

Moghaddama E.A. et al. (2015). Energy balance and global warming potential of biogas-based fuels from a life cycle perspective. Fuel Processing Technology, 132, 74–82. doi:

MoSTE (2014), Second national communication to United Nations Framework Convention on Climate Change. Ministry of Science and Technology, Government of Nepal.

Nachtnebel, H.P. & Singh, R.P.(2015). Prioritizing hydropower development using Analytical Hierarchy Process (AHP) - A case study of Nepal. International Journal of the Analytic Hierarchy Process, 7(2), 313-336. doi:

NEA (2014). Annual report. Nepal Electricity Authority.

NREL (1999), Biofuels: A Solution for Climate Change, U.S. Department of Energy.

O’Connor P.A. (2009). Energy transitions. Boston University.

Pohekar al. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8, 365. doi:

Polatidis, H. H. et al. (2006). Selecting an appropriate Multi-Criteria Decision Analysis technique for renewable energy planning. Energy Sources, 1,181–193. doi:

Richards, al. (2012). Barriers to renewable energy development: A case study of large-scale wind energy in Saskatchewan, Canada. Energy Policy, 42, 691. Doi:

Saaty, T. L. (2008). Decision making with the Analytic Hierarchy Process. International Journal of Services Sciences, 1(1), 83-98. doi:

Sapkota A. et al (2014). Role of renewable energy technologies in rural communities’ adaptation to climate change in Nepal. Renewable Energy, 68, 79. doi:

Sapkota,P. & Kim, H.(2009). Zinc–air fuel cell, a potential candidate for alternative energy. Journal of Industrial and Engineering Chemistry, 15, 445. doi:

Sapkota, P. & Kim, H.(2010). An experimental study on the performance of a zinc air fuel cell with inexpensive metal oxide catalysts and porous organic polymer separators, Journal of Industrial and Engineering Chemistry, 16, 39. doi:

Theodorou S. et al. (2010). The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus: A review. Energy Policy, 38, 7783. doi:

Terrados, J. et al. (2010). Energy planning: A sustainable approach. Spain: IDEA Research Group, University of Jaén.

USDA. ( 2014). Biogas opportunities roadmap. U.S. Department of Agriculture, U.S. Environmental Protection Agency, U.S. Department of Energy.

Wang, J.J. et al. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13, 2263. doi:

Wang, Q. et al. (2010). Barriers and opportunities of using the clean development mechanism to advance renewable energy development in China. Renewable and Sustainable Energy Reviews, 14, 1989. doi:

Wee H. M. et al. (2012). Renewable energy supply chains, performance, application barriers, and strategies for further development. Renewable and Sustainable Energy Reviews, 16, 5451. doi:

Yadoo, A. & Cruickshank, H. (2012). The role for low carbon electrification technologies in poverty reduction and climate change strategies: A focus on renewable energy mini-grids with case studies in Nepal, Peru and Kenya. Energy Policy, 42, 591. doi:

Yuksel, I. (2008). Global warming and renewable energy sources for sustainable development in Turkey. Renewable Energy, 33, 802. doi: