MULTIATTRIBUTE WAREHOUSE LOCATION SELECTION IN HUMANITARIAN LOGISTICS USING HESITANT FUZZY AHP
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
Deploying warehouses at strategic locations becomes an important issue for humanitarian relief organizations in order to improve their relief aid capability and rescue plan. The delivery of sufficient technical equipment and provision of shelter and reinforcement to victims is a significant event during relief operations. Warehouse location selection in humanitarian logistics (HL) is a challenging process because choosing a non-optimal location may cause additional problems during rescue activities. The conventional decision making tools used for a warehouse location selection problem tend to be less effective in dealing with the imprecise or vague nature of the linguistic assessment. In many situations, the values of the qualitative attributes are often incompletely determined by the decision-makers. The fuzzy set theory can capture this type of uncertainty. In this paper, a recent extension of ordinary fuzzy sets, namely hesitant fuzzy sets, is used for considering the decision makers hesitancy in the evaluation. To solve the HL warehouse location selection problem, we propose a new hesitant fuzzy Analytic Hierarchy Process (AHP) method. We also present a HL warehouse location selection case study for a Turkish humanitarian relief organization by using hesitant fuzzy preference information.
How to Cite
Downloads
##plugins.themes.bootstrap3.article.details##
Warehouse location selection, Multi-attribute decision-making (MADM), Fuzzy logic, Humanitarian logistics, , Hesitant Fuzzy Sets
Alberto, P. (2000). The logistics of industrial location decisions: an application of the analytic hierarchy process. International Journal of Logistics Research and Applications, 3(3), 273–289.
Ashrafzadeh, M., Rafiei, F. M., Isfahani, N. M., Zare, Z. (2012). Application of fuzzy TOPSIS method for the selection of Warehouse Location: A case study. Interdisciplinary Journal of Contemporary Research in Business, 3(9), 655-671.
Atkinson, M.A., Bayazit, O., Karpak, B. (2015). A case study using the Analytic Hierarchy Process for IT outsourcing decision making. International Journal of Information Systems and Supply Chain Management, 8(1), 60-84. doi: 10.4018/ijisscm.2015010104
Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International Journal of Logistics, 11(2), 101-121.
Barbarosoglu, G., Arda, Y., (2004). A two-stage stochastic programming framework for transportation planning in disaster response. Journal of the Operational Research Society, 55(1), 43-53. doi:10.1057/palgrave.jors.2601652
Blocher, E., Chen, K. H., Lin, T. W. (2008). Cost management: A strategic emphasis. McGraw-Hill/Irwin.
Bottani, E., Rizzi, A. (2006). A fuzzy TOPSIS methodology to support outsourcing of logistics services. Supply Chain Management, 11(4), 294-308. doi:
http://dx.doi.org/10.1108/13598540610671743
Buckley, J.J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17, 233–247. doi:10.1016/0165-0114(85)90090-9
Campbell, A. M., Jones, P. C. (2011). Prepositioning supplies in preparation for disasters. European Journal of Operational Research, 209(2), 156-165. doi: http://dx.doi.org/10.1016/j.ejor.2010.08.029
Cevik Onar S., Oztaysi B., Otay Ä°., Kahraman C. (2015). Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy, 90, 274-285. doi: http://dx.doi.org/10.1016/j.energy.2015.06.086
Chakravarty, A. K. (2014). Humanitarian relief chain: Rapid response under uncertainty. International Journal of Production Economics, 151, 146-157. doi: http://dx.doi.org/10.1016/j.ijpe.2013.10.007
Chanas, S., Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82 (3), 299-305. doi:10.1016/0165-0114(95)00278-2
Chang, D.Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95, 649–655. doi:10.1016/0377-2217(95)00300-2
Choi, T. Y., Dooley, K. J., Rungtusanatham, M. (2001). Supply networks and complex adaptive systems: control versus emergence. Journal of Operations Management, 19(3), 351-366. doi: http://dx.doi.org/10.1016/S0272-6963(00)00068-1
Chou, J. S., Yang, K. H., Ren, T. C. (2015). Ex-post evaluation of preparedness education in disaster prevention, mitigation and response. International Journal of Disaster Risk Reduction, 12, 188-201. doi: http://dx.doi.org/10.1016/j.ijdrr.2015.01.002
Cozzolino, A. (2012). Humanitarian logistics and supply chain management. In Humanitarian Logistics (pp. 5-16). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-30186-5_2
Dangol, R., Bahl, M., Karpak, B. (2015). Timing cooperative relationships with sequential capability development process to reduce capability development trade-offs. International Journal of Production Economics, 169, 179-189. doi: http://dx.doi.org/10.1016/j.ijpe.2015.07.014
Dekle, J., Lavieri, M.S., Martin, E., Emir-Farinas, H., Francis, R.L. (2005). A Florida country locates disaster recovery centres. Interfaces 35, 133–139.
Demirel, T., Demirel, N. Ç., Kahraman, C. (2010). Multi-attributes warehouse location selection using Choquet integral. Expert Systems with Applications, 37(5), 3943-3952. doi: http://dx.doi.org/10.1016/j.eswa.2009.11.022
DÃaz-Delgado, C., Gaytán Iniestra, J. (2014). Flood risk assessment in humanitarian logistics process design. Journal of Applied Research and Technology, 12(5), 976-984. doi: http://dx.doi.org/10.1016/S1665-6423(14)70604-2
Filev, D. and Yager, R.R. (1998). On the issue of obtaining OWA operator weights, Fuzzy Sets and Systems, 94(2), 157-169. doi:10.1016/S0165-0114(96)00254-0
Florez, J. V., Lauras, M., Okongwu, U., Dupont, L. (2015). A decision support system for robust humanitarian facility location. Engineering Applications of Artificial Intelligence, , 46, Part B, 326-335. doi: http://dx.doi.org/10.1016/j.engappai.2015.06.020
Gabel, M. J. (1998). The endurance of supranational governance: A consociational interpretation of the European Union. Comparative Politics, 463-475. doi 10.2307/422334
Gralla, E., Goentzel, J., Chomilier, B. (2015). Case study of a humanitarian logistics simulation exercise and insights for training design, Journal of Humanitarian Logistics and Supply Chain Management, 5(1), 113-138.
doi: http://dx.doi.org/10.1108/JHLSCM-01-2014-0001
Guha-Sapir, D., Hoyois, P., and Below, R., (2013). Annual Disaster Statistical Review 2013, The numbers and trends, 1-41.
Heo, E., Kim, J., Boo, K.-J. (2010). Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP. Renewable and Sustainable Energy Reviews, 14 (8), 2214-2220. doi: http://dx.doi.org/10.1016/j.rser.2010.01.020
Hsieh, C.H. and Chen, S.H. (1999). A model and algorithm of fuzzy product positioning. Information Sciences, 121, 61–82. doi: http://dx.doi.org/10.1016/S0020-0255(99)00050-X
Huang, S., Wang, Q., Batta, R., Nagi, R. (2015). An integrated model for site selection and space determination of warehouses. Computers & Operations Research, 62, 169-176. doi: http://dx.doi.org/10.1016/j.cor.2014.10.015
Ivgin, M. (2013). The decision-making models for relief asset management and interaction with disaster mitigation. International Journal of Disaster Risk Reduction, 5, 107-116. doi: http://dx.doi.org/10.1016/j.ijdrr.2013.08.005
Kahraman C, Beskese A., Kaya I. (2010). Selection among ERP outsourcing alternatives using a fuzzy multi-criteria decision making methodology. International Journal of Production Research 48(2), 547-566. doi: 10.3233/IFS-151722
Kahraman C., Çevik Onar S., Öztayşi B. (2015). Engineering economic analyses using intuitionistic and hesitant fuzzy sets, Journal of Intelligent & Fuzzy Systems, 29(3), 1151-1168.
Kahraman, C., Ates, N. Y., Çevik, S., Gülbay, M. (2007). Fuzzy multiâ€attribute cost–benefit analysis of eâ€services. International Journal of Intelligent Systems, 22(5), 547-565. doi: 10.1002/int.20213
Kahraman, C., Öztayşi, B., Çevik Onar, S. (2016). A comprehensive literature review of 50 years of fuzzy set theory. International Journal of Computational Intelligence Systems 9(1), 3-24. doi: http://dx.doi.org/10.1080/18756891.2016.1180817
Kashi, K., Franek, J. (2016). AHP in personnel management: Can the key competencies change with company’s strategy?. International Journal of Analytic Hierarchy Process, 8(1), 39-52. doi: http://dx.doi.org/10.13033/ijahp.v8i1.297
Kaya I., Öztayşi, B., Kahraman C. (2012). A two-phased fuzzy multicriteria selection among public transportation investments for policy-making and risk governance. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 20(31), 31-48. doi: http://dx.doi.org/10.1142/S021848851240003X
Leiras, A., de Brito, I., Jr., Queiroz Peres, E., Rejane Bertazzo, T., Tsugunobu Yoshida Yoshizaki, H. (2014). Literature review of humanitarian logistics research: trends and challenges. Journal of Humanitarian Logistics and Supply Chain Management, 4(1), 95-130.
doi: http://dx.doi.org/10.1108/JHLSCM-04-2012-0008
L'Hermitte, C., Tatham, P., Bowles, M., Brooks, B. (2016). Developing organisational capabilities to support agility in humanitarian logistics: An exploratory study. Journal of Humanitarian Logistics and Supply Chain Management , 6(1), 72-99. doi : http://dx.doi.org/10.1108/JHLSCM-02-2015-0006
Li, Y., Liu, X., Chen, Y. (2011). Selection of logistics centre location using axiomatic fuzzy set and TOPSIS methodology in logistics management. Expert Systems with Applications, 38, 7901–7908. doi: http://dx.doi.org/10.1016/j.eswa.2010.12.161
Liu, H., Rodriguez, R.M. (2014). A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making. Information Sciences, 258, 220–238. doi: http://dx.doi.org/10.1016/j.ins.2013.07.027
Olazabal, M., Pascual, U. (2016). Use of fuzzy cognitive maps to study urban resilience and transformation. Environmental Innovation and Societal Transitions, 18, 18-40. doi: http://dx.doi.org/10.1016/j.eist.2015.06.006
Onut, S., Soner, S. (2007). Transhipment site election using the AHP and TOPSIS approaches under fuzzy environment. Waste Management, 28 (9), 1552–1559. doi: http://dx.doi.org/10.1016/j.wasman.2007.05.019
Özcan, T., Çelebi, N., Esnaf, Ş. (2011). Comparative analysis of multi-attributes decision making methodologies and implementation of a warehouse location selection problem. Expert Systems with Applications, 38(8), 9773-9779. doi: http://dx.doi.org/10.1016/j.eswa.2011.02.022
Özdamar, L., Ertem, M.A. (2015). Models, solutions and enabling technologies in humanitarian logistics. European Journal of Operational Research, 244(1), 55-65. doi: http://dx.doi.org/10.1016/j.ejor.2014.11.030
Oztaysi B., Cevik Onar S., Bolturk E., Kahraman C. (2015). Hesitant fuzzy Analytic Hierarchy Process. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, 1-7. doi: 10.1109/FUZZ-IEEE.2015.7337948
Oztaysi B., Cevik Onar S., Kahraman C. (2016). Fuzzy multicriteria prioritization of Urban transformation projects for Istanbul. Journal of Intelligent & Fuzzy Systems, 30 (4), 2459-2474. doi: 10.3233/IFS-152016
Pazour, J. A., Carlo, H. J. (2015). Warehouse reshuffling: Insights and optimization. Transportation Research Part E: Logistics and Transportation Review, 73, 207-226.
Powers, R. (1989). Optimization models for logistics decisions. Journal of Business Logistics 10 (1), 106–121. doi: http://dx.doi.org/10.1016/j.tre.2014.11.002
Ransikarbum, K., Mason, S.J. (2016). Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations. International Journal of Production Research, 54(1), 49-68. doi: http://dx.doi.org/10.1080/00207543.2014.977458
Rath, S., Gutjahr, W. J. (2014). A math-heuristic for the warehouse location–routing problem in disaster relief. Computers & Operations Research, 42, 25-39. doi: http://dx.doi.org/10.1016/j.cor.2011.07.016
Rawls, C.G., Turnquist, M.A. (2010). Pre-positioning of emergency supplies for disaster response. Transportation Research. Part B, 44, 521–534. doi: http://dx.doi.org/10.1016/j.trb.2009.08.003
Rodriguez, R. M., Martinez, L., Torra, V., Xu, Z. S., Herrera, F. (2014). Hesitant Fuzzy Sets: State of the art and future directions. International Journal of Intelligent Systems, 29, 495–524. doi: 10.1002/int.21654
RodrÃguez, R.M., MartÃnez, L. and Herrera F. (2012). Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems, 20, 109–119. doi: 10.1109/TFUZZ.2011.2170076
Roh, S. Y., Jang, H. M., Han, C. H. (2013). Warehouse location decision factors in humanitarian relief logistics. The Asian Journal of Shipping and Logistics, 29(1), 103-120. doi: http://dx.doi.org/10.1016/j.ajsl.2013.05.006
Roh, S., Pettit, S., Harris, I., Beresford, A. (2015). The pre-positioning of warehouses at regional and local levels for a humanitarian relief organisation. International Journal of Production Economics, 170, Part B, 616-628. doi: http://dx.doi.org/10.1016/j.ijpe.2015.01.015
Russell, T. E. (2005). The humanitarian relief supply chain: analysis of the 2004 South East Asia earthquake and tsunami. Doctoral dissertation, Massachusetts Institute of Technology.
Saaty T.L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill. doi: http://dx.doi.org/10.1080/00137918308956077
Sahoo, N.K., Mohanty, B.S., Tripathy, P.K. (2016). Fuzzy inventory model with exponential demand and time-varying deterioration. Global Journal of Pure and Applied Mathematics, 12(3), 2573–2589.
Sarkis, J., Sundarraj, R.P. (2002). Hub location at Digital Equipment Corporation: a comprehensive analysis of qualitative and quantitative factors. European Journal of Operational Research, 137, 336–347. doi: http://dx.doi.org/10.1016/S0377-2217(01)00138-2
Seaman, J. (1999). Malnutrition in emergencies: how can we do better and where do the responsibilities lie? Disasters, 23(4), 306–315. doi: 10.1111/1467-7717.00120
Shahriari, M. (2011). Mapping fuzzy approach in engineering economics. International Research Journal of Finance and Economics, 81, 6-12.
Shqair, M., Altarazi, S., Al-Shihabi, S. (2014). A statistical study employing agent-based modeling to estimate the effects of different warehouse parameters on the distance traveled in warehouses. Simulation Modelling Practice and Theory, 49, 122-135. doi: http://dx.doi.org/10.1016/j.simpat.2014.08.002
Stock, J. R., Lambert, D. M. (2001). Strategic logistics management (Vol. 4). Boston, MA: McGraw-Hill/Irwin.
Tan, R.R., Aviso, K.B., Huelgas, A.P., Promentilla, M.A.B. (2014). Fuzzy AHP approach to selection problems inprocess engineering involving quantitative andqualitative aspects. Process Safety and Environmental Protection, 92, 467–475. doi: http://dx.doi.org/10.1016/j.psep.2013.11.005
Thomas, A., Kopczak, L. (2005). From logistics to supply chain management: The path forward in the humanitarian sector. White paper, San Francisco, CA: Fritz Institute.
Tofighi, S., Torabi, S.A., Mansouri, S.A. (2016). Humanitarian logistics network design under mixed uncertainty. European Journal of Operational Research, 250(1), 239-250. doi: http://dx.doi.org/10.1016/j.ejor.2015.08.059
Tomasini, R. M., Van Wassenhove, L. N. (2009). From preparedness to partnerships: case study research on humanitarian logistics. International Transactions in Operational Research, 16(5), 549-559. doi: 10.1111/j.1475-3995.2009.00697.x
Torra, V. (2010). Hesitant fuzy sets. International Journal of Inteligent Systems, 25, 529-539.
Tuzkaya, U. R., Önüt, S. (2009). A holonic approach based integration methodology for transportation and warehousing functions of the supply network. Computers & Industrial Engineering, 56(2), 708-723. doi: http://dx.doi.org/10.1016/j.cie.2007.09.003
Ucal Sari, I., Oztaysi, B., Kahraman, C. (2013). Fuzzy Analytic Hierarchy Process using Type-2 Fuzzy Sets: An application to warehouse location selection, In Doumpos and Grigoroudis (Ed.), Multiattribute decision aid and artificial intelligence, (pp. 285-308). John Wiley & Sons. doi: 10.1002/9781118522516.ch12
Vaillancourt, A. (2016). A theoretical framework for consolidation in humanitarian logistics. Journal of Humanitarian Logistics and Supply Chain Management, 6(1), 2-23. doi: http://dx.doi.org/10.1108/JHLSCM-01-2015-0001
van Laarhoven, P.J.M., Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11, 199–227. doi:10.1016/S0165-0114(83)80082-7
Van Wassenhove, L. N. (2006). Blackett memorial lecture. Humanitarian aid logistics: Supply chain management in high gear. Journal of the Operational Research Society, 57(5), 475–489.
Van Wassenhove, L. N., Pedraza Martinez, A. J. (2012). Using OR to adapt supply chain management best practices to humanitarian logistics. International Transactions in Operational Research, 19(1-2), 307-322.
Vega, D., Roussat, C. (2015). Humanitarian logistics: The role of logistics service providers. International Journal of Physical Distribution and Logistics Management, 45(4), 352-375. doi:
http://dx.doi.org/10.1108/IJPDLM-12-2014-0309
Vitoriano, B., Ortuño, M. T., Tirado, G., Montero, J. (2011). A multi-attributes optimization model for humanitarian aid distribution. Journal of Global Optimization, 51(2), 189-208. doi: 10.1007/s10898-010-9603-z
Xia, M.M., Xu, Z.S.(2011) Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning, 52, 395–407. doi:10.1016/j.ijar.2010.09.002
Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353.
doi:10.1016/S0019-9958(65)90241-X
Zhang, N., Wei, G. (2013). Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Applied Mathematical Modelling, 37, 4938–4947. doi: http://dx.doi.org/10.1016/j.apm.2012.10.002
Copyright of all articles published in IJAHP is transferred to Creative Decisions Foundation (CDF). However, the author(s) reserve the following:
- All proprietary rights other than copyright, such as patent rights.
- The right to grant or refuse permission to third parties to republish all or part of the article or translations thereof. In case of whole articles, such third parties must obtain permission from CDF as well. However, CDF may grant rights with respect to journal issues as a whole.
- The right to use all or parts of this article in future works of their own, such as lectures, press releases, reviews, textbooks, or reprint books.
- The authors affirm that the article has been neither copyrighted nor published, that it is not being submitted for publication elsewhere, and that if the work is officially sponsored, it has been released for open publication.
The only exception to the statements in the paragraph above is the following: If an article published in IJAHP contains copyrighted material, such as a teaching case, as an appendix, then the copyright (and all commercial rights) of such material remains with the original copyright holder.
CDF will receive permission for publication of copyrighted material in IJAHP. This permission is not transferable to third parties. Permission to make electronic and paper copies of part or all of the articles, including all computer files that are linked to the articles, for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage.
This permission does not apply to previously copyrighted material, such as teaching cases. In paper copies of the article, the copyright notice and the title of the publication and its date should be visible. To copy otherwise is permitted provided that a per-copy fee is paid.
To republish, to post on servers, or redistribute to lists requires that you post a link to the IJAHP article, which is available in open access delivery mode. Do not upload the article itself.
Authors are permitted to present a talk, based on a paper submitted to or accepted by IJAHP, at a conference where the paper would not be published in a copyrighted publication either before or after the conference and where the author did not assign copyright to the conference or related publisher.