EVALUATION OF FOOD PRESENTATIONS USING PICTURE FUZZY ANALYTICAL HIERARCHY PROCESS

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Oct 4, 2023
Fatma Yasli Sema Ekincek

Abstract

Preparation of food is one of the basic activities that people perform throughout their lives for pleasure as well as survival. Food can be considered within the framework of gastronomy, which is defined as "the art of quality eating and drinking". There is fierce competition in the food and beverage sector for the privilege of being preferred by customers for products offered. It is vital for restaurants to have menus that are unique and consist of innovative recipes. Creative chefs are at the forefront of creating and presenting these menus. However, scoring and evaluating chefs’ products is a cognitive, multi-perspective, and complicated process. In this study, for the first time in the literature, a multi-criteria decision-making (MCDM) approach was used to evaluate gastronomy products. Five food presentations that received full points in the final exam of the Korean Cuisine Practical Course at a gastronomy education institution were evaluated. The evaluation criteria for the students’ food presentations were presentation, creativity of the name, taste, and fusion balance of the product (the combination of different cultures in the product). The Picture Fuzzy Analytical Hierarchy Process (AHP) method was used, and the performance ranking of the food presentations, which the judges could not determine by their direct evaluation, was revealed. The study provides an easy-to-implement and fair assessment methodology for both scoring of food presentations in educational institutions and for highly competitive cooking competitions. The developed methodology can be applied to many different evaluations of culinary products.

How to Cite

Yasli, F., & Ekincek, S. (2023). EVALUATION OF FOOD PRESENTATIONS USING PICTURE FUZZY ANALYTICAL HIERARCHY PROCESS. International Journal of the Analytic Hierarchy Process, 15(2). https://doi.org/10.13033/ijahp.v15i2.1048

Downloads

Download data is not yet available.
Abstract 542 | PDF Downloads 440

##plugins.themes.bootstrap3.article.details##

Keywords

picture fuzzy sets, fuzzy analytical hierarchy process, food presentation

References
Akram, M., & Shabir, M. (2021, August). Complex T-spherical fuzzy N-soft sets. In C. Kahraman, S. Cebi, S. Cevik Onar, B. Oztaysi, A.C. Tolga, I.U. Sari (Eds.) International Conference on Intelligent and Fuzzy Systems (pp. 819-834). Springer, Cham. Doi:10.1007/978-3-030-85577-2_95

Arya, V., & Kumar, S. (2020). A new picture fuzzy information measure based on shannon entropy with applications in opinion polls using extended VIKOR–TODIM approach. Computational and Applied Mathematics, 39(3), 1-24. Doi: https://doi.org/10.1007/s40314-020-01228-1

Atanassov, K. (2016). Intuitionistic fuzzy sets. International Journal Bioautomation, 20(S1), S1- S6.

Aydoğmuş, H. Y., Kamber, E., & Kahraman, C. (2021). ERP selection using picture fuzzy CODAS method. Journal of Intelligent & Fuzzy Systems, 40(6), 11363-11373. Doi: https://doi.org/10.3233/jifs-202564

Bal, M., & Ucal Sari, I. (2022). Working environment selection after pandemic using picture fuzzy sets. In C. Kahraman, S. Cebi, S. Cevik Onar, B. Oztaysi, A.C. Tolga, I.U. Sari (Eds.) International Conference on Intelligent and Fuzzy Systems (pp. 489-497). Springer, Cham. Doi:10.1007/978-3-030-85577-2_95

Bao, K., Liu, J., & Peng, Y. (2018). Evaluation of award factors for students’ competitions based on AHP. In Proceedings of the 2018 International Conference on Education, Economics and Social Science (ICEESS 2018) (pp. 74-77). Atlantis Press. Doi: 10.2991/iceess-18.2018.18

Benayoun, R., Roy, B., & Sussman, N. (1966). Manual de reference du programme electre. Note de synthese et formation, 25(79).

Brans, J.-P. (1982). L’ingénierie de la décision: L’élaboration d’instruments d’aide a la décision. Québec, QC, Canada: Université Laval, Faculté des Sciences de l’administration.

Castillo, M. (2014). The complicated equation of smell, flavor, and taste. American Journal of Neuroradiology, 35(7), 1243-1245. Doi: https://doi.org/10.3174/ajnr.a3739

Charnes, A., Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research 2(6), 429–444. Doi: https://doi.org/10.1016/0377-2217(78)90138-8

Chen, C. C., Lee, Y. T., & Tsai, C. M. (2014). Professional baseball team starting pitcher selection using AHP and TOPSIS methods. International Journal of Performance Analysis in Sport, 14(2), 545-563. Doi: https://doi.org/10.1080/24748668.2014.11868742

Chiu, W. Y., Lee, Y. D., & Lin, T. Y. (2010). Performance evaluation criteria for personal trainers: An analytical hierarchy process approach. Social Behavior and Personality: An International Journal, 38(7), 895-905. Doi: https://doi.org/10.2224/sbp.2010.38.7.895

Christensen, C. M. (1984). Food texture perception. In C. O. Chichester, E. M. Mrak, & B. S. Schweigert (Eds.), Advances in Food Research (pp. 159-199). Academic Press. Doi: https://doi.org/10.1016/s0065-2628(08)60057-9

Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets-a new concept for computational intelligence problems. In 2013 Third World Congress on Information and Communication Technologies (WICT 2013) (pp. 1-6). IEEE. Doi: https://doi.org/10.1109/wict.2013.7113099

Duong, T. T. T., & Thao, N. X. (2021). A novel dissimilarity measure on picture fuzzy sets and its application in multi-criteria decision making. Soft Computing, 25(1), 15-25. Doi: https://doi.org/10.1007/s00500-020-05405-6

Ekincek, S., & Günay, S. (2023). A recipe for culinary creativity: Defining characteristics of creative chefs and their process. International Journal of Gastronomy and Food Science, 31, 100633. Doi: https://doi.org/10.1016/j.ijgfs.2022.100633

Gabus, A., & Fontela, E. (1972). World problems, an invitation to further thought within the framework of DEMATEL (pp. 1-8). Geneva: Battelle Geneva Research Center.

Gündoğdu, F.K., & Seyfi-Shishavan, S.A. (2022). Picture similarity measures and their application to medical diagnosis. In Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation: Proceedings of the INFUS 2021 Conference, held August 24-26, 2021. Volume 1 (pp. 865-872). Springer International Publishing. Doi: https://doi.org/10.1007/978-3-030-85626-7_101

Gündoğdu, F. K., Duleba, S., Moslem, S., & Aydın, S. (2021). Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model. Applied Soft Computing, 100, 106920. Doi: https://doi.org/10.1016/j.asoc.2020.106920

Gündoğdu, F.K., & Kahraman, C. (2020). A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Computing, 24, 4607-4621. Doi: https://doi.org/10.1007/s00500-019-04222-w

Hwang, C.-L. & Yoon, K. (1981). Multiple attribute decision making: Methods and applications— a state-of-the-art survey. New York: Springer. Doi: http://dx.doi.org/10.1007/978-3-642-48318-9

Jeou-Shyan, & Lee, H. Y. C. (2006). What does it take to be a creative culinary artist?. Journal of Culinary Science & Technology, 5(2-3), 5-22. Doi: https://doi.org/10.1300/j385v05n02_02

Laing, D. G., & Jinks, A. (1996). Flavour perception mechanisms. Trends in Food Science and Technology, 7(Special Issue on Flavour Perception), 387-389. Doi: https://doi.org/10.1016/s0924-2244(96)10049-2

Meksavang, P., Shi, H., Lin, S. M., & Liu, H. C. (2019). An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry. Symmetry, 11(4), 468. Doi: https://doi.org/10.3390/sym11040468

Meshram, S. G., Sepheri, M., Meshram, C., Moatamed, A., Benzougagh, B., Parvizi, S., ... & Rahimi, Y. (2022). Prioritization of watersheds based on a picture fuzzy analytic hierarchy process and linear assignment model. Stochastic Environmental Research and Risk Assessment, 37(2), 1-14. Doi https://doi.org/10.1007/s00477-022-02280-5

Moslem, S. (2023). A novel parsimonious best worst method for evaluating travel mode choice. IEEE Access, 11, 16768-16773. Doi: https://doi.org/10.1109/access.2023.3242120

Moslem, S., Saraji, M. K., Mardani, A., Alkharabsheh, A., Duleba, S., & Esztergár-Kiss, D. (2023). A systematic review of Analytic Hierarchy Process applications to solve transportation problems: From 2003 to 2019. IEEE Access. 11, 11973-11990. Doi: 10.1109/ACCESS.2023.3234298

Moslem, S., Duleba, S., & Esztergár-Kiss, D. (2022). Comparative mode choice analysis of university staff commuting travel preferences. European Journal of Transport and Infrastructure Research Quarterly, 22(2), 83-107.

Nisel, S., & Özdemir, M. (2016). Analytic hierarchy process & analytic network process in sport: a comprehensive literature review. International Journal of the Analytic Hierarchy Process, 8(3), 405-429. Doi: https://doi.org/10.13033/ijahp.v8i3.448

Qiyas, M., Naeem, M., Khan, S., Abdullah, S., Botmart, T., & Shah, T. (2022). Decision support system based on CoCoSo method with the picture fuzzy information. Journal of Mathematics, 2022, 1-11. Doi: https://doi.org/10.1155/2022/1476233

Saaty, T.L. (1996). Decision making with dependence and feedback: The Analytic Network Process. Pittsburgh, PA: RWS Publications.

Saaty, T. L. (1988). What is the analytic hierarchy process? In G.Mitra, H.J. Greenberg, F.A. Lootsma, M.J. Rijkaert, H.J. Zimmermann (Eds.) Mathematical methods for decision support (pp. 109-121). Springer Berlin Heidelberg. Doi: https://doi.org/10.1007/978-3-642-83555-1

Saaty, T.L. (1980) The Analytic Hierarchy Process. McGraw-Hill, New York.

Saha, A., Simic, V., Senapati, T., Dabic-Miletic, S., & Ala, A. (2022). A dual hesitant fuzzy sets-based methodology for advantage prioritization of zero-emission last-mile delivery solutions for sustainable city logistics. IEEE Transactions on Fuzzy Systems, 31(2), 407-420. Doi: https://doi.org/10.1109/tfuzz.2022.3164053

Senapati, T., Simic, V., Saha, A., Dobrodolac, M., Rong, Y., & Tirkolaee, E. B. (2023). Intuitionistic fuzzy power Aczel-Alsina model for prioritization of sustainable transportation sharing practices. Engineering Applications of Artificial Intelligence, 119, 105716. Doi: https://doi.org/10.1016/j.engappai.2022.105716

Senapati, T., & Chen, G. (2022). Picture fuzzy WASPAS technique and its application in multi-criteria decision-making. Soft Computing, 26(9), 4413-4421. Doi: https://doi.org/10.1007/s00500-022-06835-0

Shepherd, G. M. (2011). Neurogastronomy: how the brain creates flavor and why it matters. New York City, NY: Columbia University Press. Doi: https://doi.org/10.7312/shep15910

Simić, V., Soušek, R., & Jovčić, S. (2020). Picture fuzzy MCDM approach for risk assessment of railway infrastructure. Mathematics, 8(12), 2259. Doi: https://doi.org/10.3390/math8122259

Siró, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—a review. Appetite, 51(3), 456-467. Doi: https://doi.org/10.1016/j.appet.2008.05.060

Singh, P. (2015). Correlation coefficients for picture fuzzy sets. Journal of Intelligent & Fuzzy Systems, 28(2), 591-604. Doi: https://doi.org/10.3233/ifs-141338

Švadlenka, L., Simić, V., Dobrodolac, M., Lazarević, D., & Todorović, G. (2020). Picture fuzzy decision-making approach for sustainable last-mile delivery. IEEE Access, 8, 209393-209414. Doi: https://doi.org/10.1109/access.2020.3039010

Taherdoost, H., & Madanchian, M. (2023). Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia, 3(1), 77-87. Doi: https://doi.org/10.3390/encyclopedia3010006

Tian, C., & Peng, J. (2020). An integrated picture fuzzy ANP-TODIM multi-criteria decision-making approach for tourism attraction recommendation. Technological and Economic Development of Economy, 26(2), 331-354. Doi: https://doi.org/10.3846/tede.2019.11412

Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529-539.

Wei, G. (2017). Picture fuzzy aggregation operators and their application to multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 33(2), 713-724. Doi: https://doi.org/10.3233/jifs-161798

Yager, R. R. (2013). Pythagorean fuzzy subsets. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) Edmonton, AB, Canada, 2013, pp. 57-61. Doi: 10.1109/IFSA-NAFIPS.2013.6608375.

Yıldırım, B. F., & Yıldırım, S. K. (2022). Evaluating the satisfaction level of citizens in municipality services by using picture fuzzy VIKOR method: 2014-2019 period analysis. Decision Making: Applications in Management and Engineering, 5(1), 50-66. Doi: https://doi.org/10.31181/dmame181221001y

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Section
Special Topic Articles