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ABSTRACT 

 
Various methods of priority vector estimation are known in the Analytic Hierarchy 

Process (AHP). They include the classical eigenproblem method given by Thomas Saaty, 

developments in least squares and the multiplicative approach, robust estimation based on 

transformation of the pairwise ratios to the shares of preferences, and other approaches. 

In this paper, the priority vectors are completed with validation of data consistency, 

comparisons of vectors’ compatibility, and estimation of precision for matrix 

approximation by vectors. The numerical results for different data sizes and consistency 

show that the considered methods reveal useful features, are simple and convenient, and 

capable of facilitating practical applications of the AHP in solving various multiple-

criteria decision making problems. 

 

Keywords: AHP priority vector estimations; consistency measures; S-index and G-index 

of compatibility; precision of fitting 

 

 

1. Introduction 

The Analytic Hierarchy Process (AHP) is a widely used methodology and a set of 

methods for solving various problems of prioritization. Developed by Thomas Saaty and 

expanded in numerous works by many authors, it is currently one of the main approaches 

for managers and practitioners who need to apply multi-criteria decision making to reach 

their goals. In this work, the term AHP is used not in its whole rich entirety but in a 

narrower sense as a method of finding local priority vectors by a pairwise comparison 

matrix. Estimations of priority vectors in the AHP include the classical eigenproblem 

method (EM) proposed by Saaty (1977, 1980, 1994, 1996, 2005), the least squares (LS) 

solution and the multiplicative or logarithmic (LN) least squares described in Saaty and 

Vargas (1984, 1994) and Lootsma (1993, 1999), and numerous other modifications (for 

instance, Lipovetsky, 1996, 2009, 2013; Lipovetsky and Tishler, 1999). Particularly, 

priority vector robust estimation (RE) which is not prone to possible inconsistencies in 

pairwise judgements can be based on the ratio transformation to the shares of preferences 

and obtained by Markov chain modeling for steady-state probabilities (Lipovetsky and 

Conklin, 2002, 2015). 

 

The current work presents the results of comparisons between the EM, LN, LS, and RE 

using several characteristics of closeness for the obtained solutions, including pair 
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correlations, the so-called Saaty compatibility index (S-compatibility) (Saaty, 2005; Saaty 

and Peniwati, 2007), and the Garuti compatibility index or G-compatibility (Garuti, 2007; 

Garuti and Salomon, 2011). For different sizes and consistency of the matrices of 

judgement used in the classical AHP literature, the priority vectors are calculated, their 

compatibility indices estimated, and characteristics of the matrix fit by the vectors are 

described. In general, the explored methods are simple and convenient and can 

significantly facilitate practical applications of the AHP for optimum solutions in various 

problems. 

 

The paper is organized as follows: Section 2 describes the methods of priority estimation, 

Section 3 defines the measures of compatibility and quality of fit, Section 4 discusses 

several numerical examples, and Section 5 concludes on the obtained results. 

 

 

2. Priority vector estimations 

Let us briefly describe several main methods of priority vector estimations. The general 

form of the AHP pairwise priority ratios matrix can be written as follows:  

 

                                𝐴 = (

1 𝑎12 . . . 𝑎1𝑛

𝑎21 1 . . . 𝑎2𝑛

. . . . . . . . . . . . . . . . . . . . . . . . . . .
𝑎𝑛1 𝑎𝑛2 . . . 1

).                                 (1) 

 

This is a Saaty matrix of pairwise judgements among n items, elicited from an expert. 

Each element aij shows a quotient of preference of the i-th item over the j-th item in their 

comparison, so we have the transposed-reciprocal elements 𝑎𝑖𝑗 = 𝑎𝑗𝑖
−1. A theoretical 

Saaty matrix of pair comparisons defines each ij-th element as a ratio of the unknown 

priorities wi and wj: 

 

              𝑊 = (
𝑤1/𝑤1 𝑤1/𝑤2 ... 𝑤1/𝑤𝑛

− − − − − − − − − − − − − − − −
𝑤𝑛/𝑤1 𝑤𝑛/𝑤2   ... 𝑤𝑛/𝑤𝑛

) = 𝑤 ∗ (
1

𝑤
)′.              (2)  

      

The vector-column w consists of the elements w1, w2,…, wn, the vector-row (1/w)’ 

contains the reciprocal values 1/w1, 1/w2,…, 1/wn, and the right-hand side of the 

relationship (Equation 2) shows the outer product of these two vectors (where the prime 

denotes transposition). From Equation (2), it is easy to find the identical relation 𝑊𝑤 =
𝑛𝑤 for the theoretical matrix and vector. For the obtained matrix (Equation 1), a similar 

relationship can be presented as the eigenproblem: 

                                                       𝐴𝛼 = 𝜆𝛼 ,                                                         (3) 

where the first eigenvector alpha for the maximum eigenvalue 𝜆 defines the vector of 

priorities. This is the eigenvector method EM of the classical AHP. 

 

Another known way is the least squares estimation for the priority vector which can be 

expressed via the following eigenproblem: 
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                                                       (𝐴𝐴′)𝛼 = 𝜆2𝛼 ,                                 (4) 

 

The main vector alpha yields the priority vector in the LS approach. 

 

The third popular approach to priority estimation is called the multiplicative or 

logarithmic technique. It can be reduced to calculating the elements of the priority vector 

as the geometric means of the elements in each row of the matrix (Equation 1): 

 

                                                     𝛼𝑖 = √∏ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛
  .                                               (5) 

 

The obtained AHP priority vectors are also standardized by the total of the elements, so a 

solution is divided by the total of all of the elements and the sum of the normalized 

components equals one: 

                                              𝛼𝑖𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑
= 𝛼𝑖/𝑠𝑢𝑚(𝛼𝑖) .                                   (6) 

 

This is the priority vector estimation in the LN approach. 

 

The solution with robust estimation (RE) is less prone to possible inconsistencies in the 

pairwise judgements; let us introduce a theoretical matrix of shares as follows: 

 

    𝑈 = (
𝑤1/(𝑤1 + 𝑤1) 𝑤1/(𝑤1 + 𝑤2) ... 𝑤1/(𝑤1 + 𝑤𝑛)

− − − − − − − − − − − − − − − −
𝑤𝑛/(𝑤𝑛 + 𝑤1) 𝑤𝑛/(𝑤𝑛 + 𝑤2)   ... 𝑤𝑛/(𝑤𝑛 + 𝑤𝑛)

),            (7) 

 

Each element uij in Equation (7) is defined as i-th priority in the sum of i-th and j-th 

priorities: 

                         𝑢𝑖𝑗 =
𝑤𝑖

𝑤𝑖+𝑤𝑗
=

𝑤𝑖/𝑤𝑗

1+𝑤𝑖/𝑤𝑗
  .                                                        (8) 

 

To estimate the priority vector using the matrix (Equation 7), we write identical 

equalities:  

 

   {

𝑤1

𝑤1+𝑤1
(𝑤1 + 𝑤1) +

𝑤1

𝑤1+𝑤2
(𝑤1 + 𝑤2)+. . . +

𝑤1

𝑤1+𝑤𝑛
(𝑤1 + 𝑤𝑛) = 𝑛𝑤1

 − −  − −  − −  − −  − −  − −  − − 
𝑤𝑛

𝑤𝑛+𝑤1
(𝑤𝑛 + 𝑤1) +

𝑤𝑛

𝑤𝑛+𝑤2
(𝑤𝑛 + 𝑤2)+. . . +

𝑤𝑛

𝑤𝑛+𝑤𝑛
(𝑤𝑛 + 𝑤𝑛) = 𝑛𝑤𝑛

.         (9) 

 

Then, with notation (Equation 8) we present the system (Equation 9) as: 

      

     {

(𝑢11 + ∑ 𝑢1𝑗
𝑛
𝑗=1 )𝑤1 + 𝑢12𝑤2+. . . +𝑢1𝑛𝑤𝑛 = 𝑛𝑤1

 − −  − −  −  −  −  −  −  − 
𝑢𝑛1𝑤1 + 𝑢𝑛2𝑤2+. . . +(𝑢𝑛𝑛 + ∑ 𝑢𝑛𝑗

𝑛
𝑗=1 )𝑤𝑛 = 𝑛𝑤𝑛 

.                            (10)  
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In the matrix form the system (Equation 10) can be written as: 

 

                      (𝑈 + 𝑑𝑖𝑎𝑔(𝑈𝑒))𝑤 = 𝑛𝑤,                                                        (11)  

 

where U is the matrix (Equation 7), e denotes a uniform vector of n-th order, and 

diag(Ue) is a diagonal matrix of totals in each row of matrix U.  

 

In the classical AHP, the pair ratios wi/wj (Equation 2) are estimated by the elicited values 

aij (Equation 1). Using aij in Equation (8), we obtain the empirical estimates bij of the 

pairs’ shares: 

 

                                         𝑏𝑖𝑗 =
𝑎𝑖𝑗

1+𝑎𝑖𝑗
 .                                                            (12)  

 

This transformation of the elements of a matrix A (Equation 1) yields a pairwise share 

matrix B with the elements (Equation 12). These elements (Equation 12) are positive, less 

than one, and have a property 𝑏𝑖𝑗 + 𝑏𝑗𝑖 = 1. This means that the transposed elements bij 

and bji are skew-symmetrical off the diagonal bii=0.5, so 𝑏𝑖𝑗 − 𝑏𝑖𝑖 = −(𝑏𝑗𝑖 − 𝑏𝑖𝑖). 

 

For the empirical Saaty matrix A (Equation 1), we have the eigenproblem (Equation 3) in 

place of the theoretical relationship (Equation 2). Similarly, using the empirical skew-

symmetric matrix B (Equation 12) in place of theoretical matrix U, we represent the 

system (Equation 11) as the eigenproblem: 

 

                               (𝐵 + 𝑑𝑖𝑎𝑔(𝐵𝑒))𝛼 = 𝜆𝛼,                                                (13) 

 

where α as the main eigenvector. This is the RE vector of priority, and its properties have 

been studied in the works of Lipovetsky and Conklin (2002, 2015). 

 

 

3. Measures of consistency, compatibility, and precision 

Due to the general methodology of the AHP, the so-called consistency index (CI) equals 

 

                                                            𝐶𝐼 =
𝜆−𝑛

𝑛−1
                                                     (14)  

 

where 𝜆 is the maximum eigenvalue of the matrix in the problem (Equation 3), and n is 

the matrix order. The so-called random consistency index (RI) is a constant tabulated in 

the AHP for various n, and the consistency ratio (CR) equals the following value: 

 

                                                            𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 .                                                     (15)  

 

A value of CR up to 10% is considered to indicate a small inconsistency in the matrix of 

the pairwise comparisons (Equation 1), and therefore an acceptable matrix; however, if 

the CR > 10%, a review of the elicited judgements could be required. 
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For comparisons between the obtained solutions, several characteristics can be applied. 

Among those are the pairwise correlation between the elements of two vectors, which can 

be reduced to the expression: 

                     𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1

=
∑ 𝑥𝑖𝑦𝑖−

1

𝑛
𝑛
𝑖=1

√∑ 𝑥𝑖
2−

1

𝑛
𝑛
𝑖=1 √∑ 𝑦𝑖

2−
1

𝑛
𝑛
𝑖=1

 ,               (16)  

 

where a bar above the variables denotes the mean values and those equal 1/n for the 

vectors normalized by Equation (6). Without the items 1/n for centering (and this value is 

small for a bigger n), the measure (Equation 16) coincides with the cosine as a 

normalized projection of one vector onto another one. The closer a correlation or cosine 

is to 1, the higher the similarity of the two solutions. The cosine values repeat the 

correlations but are slightly bigger, so for a more conservative measure the correlation is 

preferred. 

 

Another good measure of closeness between two vectors is the so-called Saaty 

compatibility index (S-compatibility) (Saaty, 2005; Saaty and Peniwati, 2007; Garuti and 

Salomon, 2011). This index can be built as follows. For two vectors x and y of an n-th 

order, build a matrix X with its elements defined as quotients Xij=xi/xj of the components 

of the vector x, and a matrix Y with its elements defined as quotients Yij=yi/yj of the 

components of the vector y. Take the transposed matrix Y’ with the elements Y’ij=yj/yi 

and find the Hadamard element-wise product of these two matrices X*Y’, then the S-

index is defined as the normalized total of the elements of this matrix: 

 

                                      𝑆 =
1

𝑛2
∑ 𝑋𝑖𝑗𝑌𝑖𝑗

′𝑛
𝑖,𝑗=1 =

1

𝑛2
∑

𝑥𝑖

𝑥𝑗

𝑛
𝑖,𝑗=1

𝑦𝑗

𝑦𝑖
 .                              (17)  

 

If two vectors coincide, this index equals 1. Within 10% of discrepancy, when 𝑆 ≤ 1.1, 

the vectors are considered compatible; otherwise, when 𝑆 > 1.1, they are incompatible 

(Saaty and Peniwati, 2007). 

 

A further development of a compatibility measure in the so-called compatibility index G 

was proposed in Garuti (2007) and Garuti and Salomon (2011) where it was defined as: 

 

                                           𝐺 = ∑
𝑚𝑖𝑛(𝑥𝑖,𝑦𝑖)

𝑚𝑎𝑥(𝑥𝑖,𝑦𝑖)
𝑛
𝑖=1

𝑥𝑖+𝑦𝑖

2
 .                                            (18)  

 

Due to recommendation in Garuti (2007), the values G < 0.9 correspond to incompatible 

vectors, otherwise the vectors are compatible. 

 

To check a precision of fit for the pairwise judgements by the priority vector estimate, we 

can use a definition of the elements ajk as quotients of preference between each pair of j-

th and k-th items. With a vector-column of priority estimate alpha, we find its element-

reciprocal vector-row (1/alpha)’ and build their outer product by the same pattern as used 

in Equation (2). With this outer product we find the quality of its fit for the matrix A 

Equation (1). The standard error (STE) is a measure of the mean distance between the 

observed and estimated pairwise ratios: 

 

                                         𝑆𝑇𝐸 = √ 1

𝑛2
∑ (𝑎𝑗𝑘 −

𝛼𝑗

𝛼𝑘
)

2
𝑛
𝑗,𝑘=1   .                                   (19)  
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Another convenient measure of the precision for a matrix approximation by the vectors 

outer product is the mean absolute error (MAE):  

 

                                         𝑀𝐴𝐸 =
1

𝑛2
∑ |𝑎𝑗𝑘 −

𝛼𝑗

𝛼𝑘
|𝑛

𝑗,𝑘=1   .                                       (20)  

 

The smaller the values of fit (Equations 19-20), the better the quality of the vector 

estimate. The measures of STE and MAE can be obtained by using Equations (19-20) 

only for the off-diagonal pairwise ratios equal or above 1 because they correspond to the 

elicited quotients of preference, and the reciprocal values below 1 are simply added at 

completion of the matrix (Equation 1) of pairwise judgements. 

 

Besides the characteristics of the residual mean values assessed via standard deviation 

(Equation 19) or absolute deviation (Equation 20), the quality of approximation of the 

pairwise judgements by the obtained priority vectors can be checked by a measure 

reminding the coefficient of multiple determination R
2
 that is widely used in regression 

analysis. As shown in Lipovetsky (2009), this coefficient can be defined via the observed 

and estimated paired ratios of the priorities: 

 

                                  𝑅2 = 1 −
𝑅𝑆𝑆

𝐸𝑆𝑆
= 1 −

∑ (𝑎𝑗𝑘−
𝛼𝑗

𝛼𝑘
)

2
𝑛
𝑗,𝑘=1

∑ (𝑎𝑗𝑘−1)
2𝑛

𝑗,𝑘=1

 .                                   (21)  

 

In the numerator (Equation 21) the residual sum of squares (RSS) of the estimated priority 

deviations from the elicited values is used, and the denominator is presented by the 

equivalent sum of squares (ESS) which assumes all the same preferences αj /αk ≡ 1. The 

coefficient (Equation 21) shows how much the found priorities outperform the case of 

absence of preferences among the alternatives. The better the approximation of the paired 

judgements by the estimated priorities is the closer the RSS is to zero, so the coefficient 

of determination R
2
 is bigger and closer to one. In the absence of preferences αj/αk = 1, 

the numerator equals the denominator, and R
2
 = 0. For the exact fit ajk = αj/αk for all 

judgements, RSS = 0, and R
2
 = 1.  

 

The value R
2
 commonly belongs to the interval from 0 to 1, which makes it a very 

convenient measure for comparison of the priority vectors obtained by different 

techniques. Only really poor estimates can produce a residual total RSS above the value 

of the equivalent residuals ESS, and it would be indicated by a negative R
2
. The 

characteristic (Equation 21) corresponds to the STE measure (Equation 19) of squared 

deviations, but it is possible to build the other estimates, for example,
 
using the MAE 

residuals (Equation 20) as well. 

 
 

4. Numerical comparisons for priority estimations 

Let us consider numerical examples of the priority estimations for three classical AHP 

problems. 

 

Example 1: the problem of “Choosing the best home” as described in Saaty and Kearns 

(1985), Saaty and Vargas (1994) and Saaty (1996). This matrix is also used for checking 
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some new approaches (Lipovetsky, 1996; Lipovetsky and Tishler, 1999; Lipovetsky and 

Conklin, 2002, 2015). The criteria of comparison are: 1 – size of house, 2 – location to 

bus, 3 – neighborhood, 4 – age of house, 5 - yard space, 6 – modern facilities, 7 – general 

condition, 8 – financing. The matrix of pairwise comparisons A (Equation 1) for this 

problem is presented in Table 1a. 

 

In this example with n=8, the maximum eigenvalue (Equation 3) of the matrix in Table 

1a equals 𝜆 = 9.669. With the random consistency for this case RI=1.41, the consistency 

index and consistency ratio (Equations 14-15) are: 

 

                               𝐶𝐼 =
9.669−8

7
= 0.238,    𝐶𝑅 =

0.238

1.41
= 0.169.     

                     

A value of CR up to 10% is considered to indicate some inconsistency, so the obtained 

result of 17% is acceptable with a reservation, when the data could require a review of 

the elicited judgements, and in Lipovetsky and Conklin (2002) it was shown how to 

identify and to adjust the data in this case. 

 

Table 1a 

Example 1: Choosing the best home problem. Pairwise comparison matrix. 

 

item 1 2 3 4 5 6 7 8 

1 

2 

3 

4 

5 

6 

7 

8 

1 

1/5 

1/3 

1/7 

1/6 

1/6 

3 

4 

5 

1 

3 

1/5 

1/3 

1/3 

5 

7 

3 

1/3 

1 

1/6 

1/3 

1/4 

1/6 

5 

7 

5 

6 

1 

3 

4 

7 

8 

6 

3 

3 

1/3 

1 

2 

5 

6 

6 

3 

4 

1/4 

1/2 

1 

5 

6 

1/3 

1/5 

6 

1/7 

1/5 

1/5 

1 

2 

1/4 

1/7 

1/5 

1/8 

1/6 

1/6 

1/2 

1 

 

Several methods of priority estimation for this data are presented in Table 1b. In its upper 

part, there are four estimates of the priority vector as follows: the classical EM solution 

(Equation 3), the LS estimation (Equation 4), the LN technique (Equation 5), and the 

robust estimation RE (Equation 13). All the vectors are normalized by the total of their 

elements equaling one (Equation 6). Judging by eye, all of the solutions are very similar 

by weight and the smallest and the biggest by importance are the age and financing of the 

house, items 4 and 8, respectively. 

 

For comparison between the obtained four priority vectors we applied the measures 

(Equations 16-18) of correlations, S-compatibility, and G- compatibility, presented after 

the vectors in the three matrices in Table 1b. Judging by the correlations, all of the 

vectors are close enough by their structure and the LS is a bit further from the other three. 

The measure of S-compatibility proves that the EM, LN, and RE vectors are similar, 

within less than the required threshold of 10% of the S-index deviation from one. The 

more sensitive G-compatibility demonstrates that the pair of EM and LN vectors are 

close with G=0.927, and the two vectors LN and RE are close with G=0.912, which are 
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values above the threshold 0.9 needed for viewing the corresponding vectors as 

compatible. 

 

Table 1b 

Example 1: Choosing the best home problem. Priority vector estimations 

 

Item EM LS LN RE 

1. size of house 0.173 0.199 0.175 0.150 

2. location to bus 0.054 0.100 0.063 0.054 

3. neighborhood 0.188 0.148 0.149 0.141 

4. age of house 0.018 0.017 0.019 0.022 

5. yard space 0.031 0.045 0.036 0.037 

6. modern facilities 0.036 0.065 0.042 0.041 

7. general condition 0.167 0.184 0.167 0.163 

8. financing 0.333 0.242 0.350 0.392 

Correlations 

    EM 1 0.935 0.988 0.972 

LS 0.935 1 0.933 0.881 

LN 0.988 0.933 1 0.991 

RE 0.972 0.881 0.991 1 

S-compatibility 

    EM 1 1.113 1.015 1.028 

LS 1.113 1 1.071 1.122 

LN 1.015 1.071 1 1.010 

RE 1.028 1.122 1.010 1 

G-compatibility 

    EM 1 0.774 0.927 0.865 

LS 0.774 1 0.809 0.742 

LN 0.927 0.809 1 0.912 

RE 0.865 0.742 0.912 1 

       Precision 

  STE 2.071 1.849 1.813 1.831 

MAE 1.079 1.083 0.958 0.934 

R
2
 0.423 0.540 0.558 0.549 

 

The last segment at the bottom of Table 1b displays the precision by Equations (19-21) 

for each vector solution. By the minimum standard error STE, the best model is the LN, 

and by the mean absolute error MAE, the best model is the RE. The values of the MAE 

also suggest that an average deviation from the observed pair judgements evaluated by 

the obtained quotients from a priority vector is not more than one unit. The coefficient of 

multiple determination R
2
 in the last row of Table 1b shows by its maximum values that 

the LN and RE models outperform the other two models, though all R
2
 values are not 
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high, which indicates a difficulty in approximation of inconsistent judgements by a 

priority vector in any estimation. 

 

Example 2: the problem of “Distance from Philadelphia” is one of the first AHP 

problems described by Saaty (1977). The distance of six cities from Philadelphia was 

estimated by the criterion: for each pair of cities, how many times farther is the more 

distant city located from Philadelphia than the nearer one? The elicited data is presented 

in Table 2a. 

 

Table 2a  

Example 2: Distance from Philadelphia problem. Pairwise comparison matrix 

 

Airport CAI TYO ORD SFO LGW YMX 

Cairo.CAI 1 0.333 8 3 3 7 

Tokyo.TYO 3 1 9 3 3 9 

Chicago.ORD 0.125 0.111 1 0.167 0.2 2 

SanFrancisco.SFO 0.333 0.333 6 1 0.333 6 

London.LGW 0.333 0.333 5 3 1 6 

Montreal.YMX 0.143 0.111 0.5 0.167 0.167 1 

 

The maximum eigenvalue (Equation 3) in this example equals 𝜆 = 6.454. The random 

consistency for n=6 is RI=1.24, then the consistency index and consistency ratio 

Equations (14-15) are: 

                               𝐶𝐼 =
6.454−6

5
= 0.091,    𝐶𝑅 =

0.091

1.24
= 0.073 .                      

The value of CR=7.3% is less than the 10% permitted, which allows one to conclude that 

the data on pair judgements is sufficiently consistent. 

 

Table 2b presents the results of priority estimations for this example and is organized as 

the previous Table 1b, but with one additional column of the actual shares of distances 

known in this case.  
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Table 2b 

Example 2: Distance from Philadelphia problem. Priority vector estimations 

 

City EM LS LN RE actual 

1. Cairo 0.262 0.254 0.260 0.239 0.278 

2. Tokyo 0.397 0.305 0.399 0.447 0.361 

3. Chicago 0.033 0.047 0.035 0.034 0.032 

4. San Francisco 0.116 0.186 0.116 0.104 0.132 

5. London 0.164 0.184 0.163 0.147 0.177 

6. Montreal 0.027 0.024 0.027 0.029 0.019 

Correlations 

    EM 1 0.943 1.000 0.990 0.991 

LS 0.943 1 0.941 0.898 0.973 

LN 1.000 0.941 1 0.991 0.990 

RE 0.990 0.898 0.991 1 0.962 

Actual 0.991 0.973 0.990 0.962 1 

S-compatibility 

    EM 1 1.064 1.000 1.009 1.024 

LS 1.064 1 1.064 1.106 1.045 

LN 1.000 1.064 1 1.008 1.027 

RE 1.009 1.106 1.008 1 1.060 

Actual 1.024 1.045 1.027 1.060 1 

G-compatibility 

    EM 1 0.821 0.993 0.900 0.914 

LS 0.821 1 0.820 0.753 0.854 

LN 0.993 0.820 1 0.905 0.908 

RE 0.900 0.753 0.905 1 0.823 

Actual 0.914 0.854 0.908 0.823 1 

Precision 

    STE 1.390 1.340 1.333 1.523 2.295 

MAE 0.696 0.862 0.686 0.790 1.012 

R
2
 0.794 0.809 0.810 0.753 0.438 

 
We see that in general the vectors are similar and each one makes sense as proportionally 

scaled distances from Philadelphia to other cities in the USA, as well as to other countries 

and continents. The pair correlations also show that the vectors are closely related to the 

actual distances, and the same is supported by the S-compatibility index. G-compatibility 

indicates that the EM and LN vectors are compatible with the actual shares of distances. 

The precision of the reproduction of the judgement matrix is high, especially with the LS 

and LN methods. The precision measured by STE, MAE, and R
2
 of the actual distances is 

the worst one within the other values in the last rows of Table 2b. This means that the 

pair judgements on distances correspond to the priority vectors rather than to the actual 

distance shares. Therefore, in this data we do not need to use the actual data to consider 

compatibility among the vectors. 
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Example 3. The data for this problem is given in Whitaker (2007) where the area of five 

geometric figures was compared – see the matrix of pair judgements in Table 3a. 

 

Table 3a 

Example 3: Geometric figures’ area problem. Pairwise comparison matrix 

 

Figure Circle Triangle Square Diamond Rectangle 

Circle 1 9 2.5 3 6 

Triangle 0.111 1 0.2 0.286 0.667 

Square 0.4 5 1 1.7 3 

Diamond 0.333 3.5 0.588 1 1.5 

Rectangle 0.167 1.5 0.333 0.667 1 

 

The maximum eigenvalue of this matrix is 𝜆 = 5.026. The random consistency for n=5 is 

RI=1.12, so the consistency index and consistency ratio (Equations 14-15) equal the 

following values: 

 

                               𝐶𝐼 =
5.026−5

4
= 0.006,    𝐶𝑅 =

0.006

1.12
= 0.006 .       

                

CR=0.6% which proves a very high level of consistency of this data. This can be 

explained by the pairwise ratios that were used where not only the integer numbers but 

also the rational numbers (like 2.5 or 3.5) were permitted in the preference evaluation. 

 

Table 3b presents the priority estimation results for this example, and is organized as 

Table 2b, with the additional column of the actual shares of the areas measured for these 

figures. 
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Table 3b 

Example 3: Geometric figures’ area problem. Priority vector estimations 

 

 

EM LS LN RE actual 

1. Circle 0.488 0.464 0.487 0.496 0.470 

2. Triangle 0.049 0.050 0.049 0.049 0.050 

3. Square 0.233 0.248 0.233 0.225 0.240 

4. Diamond 0.148 0.159 0.148 0.147 0.140 

5. Rectangle 0.082 0.078 0.082 0.083 0.090 

Correlations 

    EM 1 0.998 0.999 0.999 0.999 

LS 0.998 1 0.998 0.995 0.998 

LN 0.999 0.998 1 0.999 0.999 

RE 0.999 0.995 0.999 1 0.998 

actual 0.999 0.998 0.999 0.998 1 

S-compatibility 

    EM 1 1.003 1.000 1.000 1.003 

LS 1.003 1 1.003 1.004 1.007 

LN 1.000 1.003 1 1.000 1.003 

RE 1.000 1.004 1.000 1 1.003 

actual 1.003 1.007 1.003 1.003 1 

G-compatibility 

   EM 1 0.948 0.999 0.982 0.955 

LS 0.948 1 0.948 0.931 0.953 

LN 0.999 0.948 1 0.982 0.956 

RE 0.982 0.931 0.982 1 0.940 

actual 0.955 0.953 0.956 0.940 1 

Precision 

    STE 0.253 0.195 0.253 0.289 0.279 

MAE 0.145 0.110 0.145 0.162 0.165 

R
2
 0.987 0.992 0.987 0.983 0.985 

 

All the vector estimates in this data practically coincide; the pair correlations are very 

high, and both the S- and G- indices prove compatibility among the estimates and with 

the actual observations. The precision measured by the STE, MAE, and R
2
 characteristics 

demonstrates a high quality of fit of the data by any of the estimated vectors of priority 

and by the actual values as well. 

 
 

5. Conclusions 

The paper considered several methods of priority vector evaluation in the AHP. They 

include the classical eigenproblem method, least squares, multiplicative or logarithmic 

approach, and a robust estimation based on transformation of the pairwise ratios to the 

shares of preferences. Together with estimation of the vectors, validation of data 
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consistency and comparison of vectors by correlations, the S- and G- compatibility 

indices were also completed. The numerical results for different data sizes and 

consistency indices demonstrate that all of the methods produce compatible results for the 

consistent data, otherwise a discrepancy between the different methods of the priority 

estimation would be observed. Therefore, the data consistency should always be proved 

before the vector evaluation. 

 

Another important conclusion concerns the precision assessment for the data matrix 

approximation by the obtained priority vectors. Any regular statistical modeling requires 

a verification of the produced results by some quality characteristics. For example, in 

regression analysis, measures like the residual standard error STE, mean absolute error 

MAE, and coefficient of multiple determination R
2
 are commonly employed. Applying 

them in the AHP environment can enrich the evaluation and interpretation of the results 

on priority modeling and is demonstrated on the numerical estimations performed in the 

paper. For instance, in the data for Example 1 with a low consistency, the R
2
 values are 

also not high which indicates a difficulty of approximation of inconsistent judgements by 

a priority vector in any estimation, and by MAE values a mean deviation of the quotients 

of a priority vector’s elements from the observed pair judgements could be as big as one 

unit. In Example 2 with a good consistency, the precision of the reproduction of the 

judgement matrix by the found priority vectors is high enough, although at the same time 

the actual distances occurred to yield the worst vector for approximation of the elicited 

pairwise priority matrix Therefore, in this data we should not use the actual data on 

distances to check the compatibility with the obtained estimates of the vectors. Example 3 

with a perfect consistency yields all vectors of high compatibility and of a great quality of 

the elicited judgements reconstruction by each vector’s quotients of preference. 

 

The considered methods of priority vector estimation and characteristics of their quality 

are convenient and helpful in practical applications of the AHP for solving various multi-

criteria decision making problems. 
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