##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Apr 24, 2019
Ali Karasan

Abstract

Intuitionistic fuzzy extensions are the most used type of fuzzy extensions in the literature since they better represent decision makers strength of commitment on the considered subject in an effective way including membership and non-membership functions. On the other hand, decision makers may assign more than one intuitionistic fuzzy number in order to capture their hesitancies when they are hesitant in assigning a membership degree and a non-membership degree. Hesitant fuzzy sets, another extension of ordinary fuzzy sets, help decision makers to assign different values on the same element aiming at reflexing decision makers’ hesitation. Utilizing these two types of fuzzy sets capture both uncertainty and ambiguity of the considered problem and helps to eliminate the weaknesses of each fuzzy extension. In this study,
hesitant intuitionistic fuzzy linguistic sets (HIFLSs) are used to extend the Analytical Hierarchy Process (AHP). The developed method is applied to investment prioritization problem, based on relevant risk factors. Comparative analyses with intuitionistic fuzzy AHP and hesitant fuzzy AHP methods are realized in order to validate the proposed method. A sensitivity analysis is also conducted for the stability of the results of the hesitant intuitionistic fuzzy linguistic AHP method.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Keywords

Hesitant fuzzy sets, intuitionistic fuzzy sets, AHP, prioritization, hesitant intuitionistic fuzzy linguistic sets

References
Abdel-Basset, M., Mohamed, M., & Sangaiah, A. K. (2018). Neutrosophic AHP-Delphi Group decision making model based on trapezoidal neutrosophic numbers. Journal of Ambient Intelligence and Humanized Computing, 9(5), 1427-1443. Doi: https://doi.org/10.1007/s12652-017-0548-7

Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Scientific Reports, 9(1), 2082. Doi: https://doi.org/10.1038/s41598-019-38567-x

Atanassov, K. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), 87-96. Doi: https://doi.org/10.1016/s0165-0114(86)80034-3

Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. Doi: https://doi.org/10.1016/0165-0114(85)90090-9

Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. Doi: https://doi.org/10.1016/0377-2217(95)00300-2

Ciucci, D. (2016). Orthopairs and granular computing. Granular Computing, 1(3), 159-170. Doi: https://doi.org/10.1007/s41066-015-0013-y

Durão, L. F. C., Carvalho, M. M., Takey, S., Cauchick-Miguel, P. A., & Zancul, E. (2018). Internet of things process selection: AHP selection method. The International Journal of Advanced Manufacturing Technology, 99(9-12), 2623-2634. Doi: https://doi.org/10.1007/s00170-018-2617-2

Ilbahar, E., Kara?an, A., Cebi, S., & Kahraman, C. (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety Science, 103, 124-136. Doi: https://doi.org/10.1016/j.ssci.2017.10.025

Kahraman, C., Öztay?i, B., Sar?, ?. U., & Turano?lu, E. (2014). Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowledge-Based Systems, 59, 48-57. Doi: https://doi.org/10.1016/j.knosys.2014.02.001

Ozdemir, S., & Sahin, G. (2018). Multi-criteria decision-making in the location selection for a solar PV power plant using AHP. Measurement, 129, 218-226. Doi: https://doi.org/10.1016/j.measurement.2018.07.020

Öztaysi, B., Onar, S. Ç., Boltürk, E., & Kahraman, C. (2015). Hesitant fuzzy analytic hierarchy process. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Doi: https://doi.org/10.1109/fuzz-ieee.2015.7337948

Pipatprapa, A., Huang, H. H., & Huang, C. H. (2018). Enhancing the effectiveness of AHP for environmental performance assessment of Thailand and Taiwan’s food industry. Environmental Monitoring and Assessment, 190(12), 748. Doi: https://doi.org/10.1007/s10661-018-7113-5

Rodriguez, R. M., Martinez, L., & Herrera, F. (2012). Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems, 20(1), 109-119. Doi: https://doi.org/10.1109/tfuzz.2011.2170076

Saaty, T.L. (1980). The Analytic Hierarchy Process: Planning, priority setting, resource allocation. McGraw-Hill International Book Company.

Smarandache F. (1995). Neutrosophic logic and set, mss, http://fs.gallup.unm.edu/neutrosophy.htm.
Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529-539.

Vladeanu, G. J., & Matthews, J. C. (2019). Consequence-of-failure model for risk-based asset management of wastewater pipes using AHP. Journal of Pipeline Systems Engineering and Practice, 10(2), 04019005. Doi: https://doi.org/10.1061/(asce)ps.1949-1204.0000370

Vyas, G. S., Jha, K. N., & Patel, D. A. (2019). Development of green building rating system using AHP and fuzzy integrals: A aase of India. Journal of Architectural Engineering, 25(2), 04019004. Doi: https://doi.org/10.1061/(asce)ae.1943-5568.0000346

Wu, J., Huang, H. B., & Cao, Q. W. (2013). Research on AHP with interval-valued intuitionistic fuzzy sets and its application in multi-criteria decision making problems. Applied Mathematical Modelling, 37(24), 9898-9906. Doi: https://doi.org/10.1016/j.apm.2013.05.035

Xu, Z., & Xia, M. (2011). Distance and similarity measures for hesitant fuzzy sets. Information Sciences, 181(11), 2128-2138. Doi: https://doi.org/10.1016/j.ins.2011.01.028

Xu, Z., & Xia, M. (2011). On distance and correlation measures of hesitant fuzzy information. International Journal of Intelligent Systems, 26(5), 410-425. Doi: https://doi.org/10.1002/int.20474

Xu, S., Xu, D., & Liu, L. (2019). Construction of regional informatization ecological environment based on the entropy weight modified AHP hierarchy model. Sustainable Computing: Informatics and Systems, 22, 26-31. Doi: https://doi.org/10.1016/j.suscom.2019.01.015

Yager, R. R., & Abbasov, A. M. (2013). Pythagorean membership grades, complex numbers, and decision making. International Journal of Intelligent Systems, 28(5), 436-452. Doi: https://doi.org/10.1002/int.21584

Yucesan, M., & Kahraman, G. (2019). Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP. Energy Policy, 126, 343-351. Doi: https://doi.org/10.1016/j.enpol.2018.11.039

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-1, Information Sciences, 8, 199-249. Doi: https://doi.org/10.1016/0020-0255(75)90036-5
Section
Special Topic Articles