##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published Sep 15, 2018
Cengiz Kahraman Başar Öztayşi Sezi Çevik Onar Onur Doğan

Abstract

Intuitionistic fuzzy sets (IFS) proposed by Atanassov (1983, 1986) are a generalization of ordinary fuzzy sets. They incorporate the degree of hesitation which is defined as 1 minus the sum of membership and non-membership degrees. Type-2 fuzzy sets were first introduced by Zadeh (1975) as an extension of the concept of an ordinary fuzzy set. Type-2 fuzzy sets have grades of membership that are themselves fuzzy. The membership function of a type-2 fuzzy set is three-dimensional, and it is the new third dimension that provides additional degrees of freedom for handling uncertainties. An intuitionistic fuzzy set can be converted to a Type-2 fuzzy set by subtracting its non-membership function from 1. Thus, an intuitionistic fuzzy multi-criteria decision making problem can be solved by using type-2 fuzzy multi-criteria decision making techniques. In this paper, an intuitionistic fuzzy originated interval type-2 fuzzy AHP method is developed and applied to the technology selection problem of a damless hydroelectric power plant. Damless hydroelectric power plants are environmentally friendly and sustainable energy production systems. Several criteria and damless technology alternatives along the Sakarya River in Turkey are considered. Linguistic evaluations are considered in this multi-criteria damless technology selection problem.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Keywords

Intuitionistic fuzzy sets, type-2 fuzzy sets, AHP, multi-criteria decision making, damless hydroelectric power

References
Adhau, S. P., Moharil, R. M., & Adhau, P. G. (2012). Mini-hydro power generation on existing irrigation projects: Case study of Indian sites. Renewable and Sustainable Energy Reviews, 16(7), 4785-4795. Doi: https://doi.org/10.1016/j.rser.2012.03.066

Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96. Doi: https://doi.org/10.1016/S0165-0114(86)80034-3

Atanassov, K. (1999). Intuitionistic Fuzzy Sets. Heidelberg, Germany: Springer.

Buckley, J.J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 34, 187-195.

Büyüközkan G., Güleryüz S., Karpak B. (2017). A new combined IF-DEMATEL and IF-ANP approach for CRM partner evaluation. International Journal of Production Economics, 191, 194-206. Doi: https://doi.org/10.1016/j.ijpe.2017.05.012

Cevik Onar, S., Oztaysi, B., Kahraman, C. (2014). Strategic decision selection using hesitant fuzzy TOPSIS and interval type-2 fuzzy AHP: a case study. International Journal of Computational Intelligence Systems, 7(5), 1002-1021. Doi: https://doi.org/10.1016/S0165-0114(86)80034-3

Chang, D. Y. (1996). Applications of the Extent Analysis Method on Fuzzy-AHP. European Journal of Operational Research, 95(3), 649-655. Doi: https://doi.org/10.1016/0377-2217(95)00300-2

Chen, X., & Tan, C. (2010). Intuitionistic fuzzy Choquet integral operator for multi-criteria decision making. Expert Systems with Applications, 37(1), 149-157. Doi: https://doi.org/10.1016/j.eswa.2009.05.005

Chen, D., Zhang, L., Jiao, J. (2010). Triangle fuzzy number intuitionistic fuzzy aggregation operators and their application to group decision making. In F.L. Wang, H. Deng, Y. Gao, J. Lei (Eds.), Artificial Intelligence and Computational Intelligence (350-357). Berlin/Heidelberg: Springer-Verlag.

Ilbahar, E., Kara?an, A. Cebi, S. & Kahraman, C. (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety Science, 103, 124-136. Doi: https://doi.org/10.1016/j.ssci.2017.10.025

Ioannidou, C. & O’Hanley, J. R. (2018). Eco-friendly location of small hydropower. European Journal of Operational Research, 264(3), 907-918. Doi: https://doi.org/10.1016/j.ejor.2016.06.067

Jager, H. I., Efroymson, R. A., Opperman, J. J., & Kelly, M. R. (2015). Spatial design principles for sustainable hydropower development. Renewable and Sustainable Energy Reviews, 45, 808-816. Doi: https://doi.org/10.1016/j.rser.2015.01.067
Kahraman, C. Öztay?i, B., Uçal Sar?, ?., Turano?lu, E. (2014), Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowledge-Based Systems, 59, 48-57. Doi: https://doi.org/10.1016/j.knosys.2014.02.001

Karnik N. N. & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set. Information Science, 132, 195–220. Doi: https://doi.org/10.1016/s0020-0255(01)00069-x

Kuby, M. J., Fagan, W. F., ReVelle, C. S., & Graf, W. L. (2005). A multiobjective optimization model for dam removal: an example trading off salmon passage with hydropower and water storage in the Willamette basin. Advances in Water Resources, 28(8), 845-855. Doi: https://doi.org/10.1016/j.advwatres.2004.12.015

Laarhoven, P. J. M., and Pedrycz, W. (1983). A fuzzy extension of Saaty’s priority theory. Fuzzy Sets and Systems, 11, 229-241. Doi: https://doi.org/10.1016/s0165-0114(83)80082-7

Li, X.Z., Chen, Z.J., Fan, X.C., & Cheng, Z.J. (2018). Hydropower development situation and prospects in China. Renewable and Sustainable Energy Reviews, 82(1), 232-239. Doi: https://doi.org/10.1016/j.rser.2017.08.090

Mendel, J. M., John, R. I. & Liu, F. (2006). Interval type-2 fuzzy logic systems made simple. IEEE Transaction Fuzzy Systems, 14(6), 808–821. Doi: https://doi.org/10.1109/tfuzz.2006.879986

Otay ?., Öztay?i B., Çevik Onar S., Kahraman C. (2017). Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowledge-Based Systems, 1, 123-124. Doi: https://doi.org/10.1016/j.knosys.2017.06.028

Özcan, E. C., Ünlüsoy, S. & Eren, T. (2017). A combined goal programming – AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants. Renewable and Sustainable Energy Reviews, 78, 1410-1423. Doi: https://doi.org/10.1016/j.rser.2017.04.039

Sternberg, R. (2010). Hydropower's future, the environment, and global electricity systems. Renewable and Sustainable Energy Reviews, 14(2), 713-723. Doi: https://doi.org/10.1016/j.rser.2009.08.016

Reddy, V. R., Uitto, J. I., Frans, D. R., & Matin, N. (2006). Achieving global environmental benefits through local development of clean energy? The case of small hilly hydel in India. Energy Policy, 34(18), 4069-4080. Doi: https://doi.org/10.1016/j.enpol.2005.09.026

Sarasúa, J. I., Elías, P., Martínez-Lucas, G., Pérez-Díaz, J. I., Wilhelmi, J. R., & Sánchez, J. Á. (2014). Stability analysis of a run-of-river diversion hydropower plant with surge tank and spillway in the head pond. The Scientific World Journal, 2014, 1-13. Doi: https://doi.org/10.1155/2014/874060
Szabó, S., Bódis, K., Huld, T., & Moner-Girona, M. (2013). Sustainable energy planning: Leapfrogging the energy poverty gap in Africa. Renewable and Sustainable Energy Reviews, 28, 500-509. Doi: https://doi.org/10.1016/j.rser.2013.08.044

Tilmant, A., Kinzelbach, W., Juizo, D., Beevers, L., Senn, D., & Casarotto, C. (2012). Economic valuation of benefits and costs associated with the coordinated development and management of the Zambezi river basin. Water Policy, 14(3), 490-508. Doi: https://doi.org/10.2166/wp.2011.189

Volshanik, V. V. (1999). Calculation of the energy potential of flows realized by damless (free-flowing) hydropower plants. Hydrotechnical Construction, 33(4), 227–229. Doi: https://doi.org/10.1007/bf02764513

Zadeh, L.A. (1965). Fuzzy sets. Information and Control. 8(3), 338-353. Doi: https://doi.org/10.1016/S0019-9958(65)90241-X

Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8, 199-249. Doi: https://doi.org/10.1016/0020-0255(75)90036-5

Zhu, B. & Xu, Z. (2014). Analytic hierarchy process-hesitant group decision making. European Journal of Operational Research, 239(3), 794-801. Doi: https://doi.org/10.1016/j.ejor.2014.06.019

Web sources:
https://www.turbulent.be/damless-hydro-power-plants-and-its-implications/
Section
Special Topic Articles